This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332642 #11 Feb 16 2025 08:33:59 %S A332642 90,126,198,234,270,306,342,350,378,414,522,525,540,550,558,594,630, %T A332642 650,666,702,738,756,774,810,825,846,850,918,950,954,975,990,1026, %U A332642 1050,1062,1078,1098,1134,1150,1170,1188,1206,1242,1274,1275,1278,1314,1350,1386 %N A332642 Numbers whose negated unsorted prime signature is not unimodal. %C A332642 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %C A332642 A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization. %H A332642 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %e A332642 The sequence of terms together with their prime indices begins: %e A332642 90: {1,2,2,3} %e A332642 126: {1,2,2,4} %e A332642 198: {1,2,2,5} %e A332642 234: {1,2,2,6} %e A332642 270: {1,2,2,2,3} %e A332642 306: {1,2,2,7} %e A332642 342: {1,2,2,8} %e A332642 350: {1,3,3,4} %e A332642 378: {1,2,2,2,4} %e A332642 414: {1,2,2,9} %e A332642 522: {1,2,2,10} %e A332642 525: {2,3,3,4} %e A332642 540: {1,1,2,2,2,3} %e A332642 550: {1,3,3,5} %e A332642 558: {1,2,2,11} %e A332642 594: {1,2,2,2,5} %e A332642 630: {1,2,2,3,4} %e A332642 650: {1,3,3,6} %e A332642 666: {1,2,2,12} %e A332642 702: {1,2,2,2,6} %e A332642 For example, 630 has negated unsorted prime signature (-1,-2,-1,-1), which is not unimodal, so 630 is in the sequence. %t A332642 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]] %t A332642 Select[Range[2000],!unimodQ[-Last/@FactorInteger[#]]&] %Y A332642 These are the Heinz numbers of the partitions counted by A332639. %Y A332642 The case that is not unimodal either is A332643. %Y A332642 The version for compositions is A332669. %Y A332642 The complement is A332282. %Y A332642 Unimodal compositions are A001523. %Y A332642 Non-unimodal permutations are A059204. %Y A332642 Non-unimodal compositions are A115981. %Y A332642 Unsorted prime signature is A124010. %Y A332642 Non-unimodal normal sequences are A328509. %Y A332642 The number of non-unimodal negated permutations of a multiset whose multiplicities are the prime indices of n is A332742(n). %Y A332642 Partitions whose negated 0-appended first differences are not unimodal are A332744, with Heinz numbers A332832. %Y A332642 Cf. A007052, A056239, A112798, A181821, A242031, A329747, A332280, A332281, A332578, A332671, A332831. %K A332642 nonn %O A332642 1,1 %A A332642 _Gus Wiseman_, Feb 28 2020