cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332643 Neither the unsorted prime signature of a(n) nor the negated unsorted prime signature of a(n) is unimodal.

This page as a plain text file.
%I A332643 #9 Feb 16 2025 08:33:59
%S A332643 2100,3300,3900,4200,4410,5100,5700,6468,6600,6900,7644,7800,8400,
%T A332643 8700,9300,9996,10200,10500,10780,10890,11100,11172,11400,12300,12740,
%U A332643 12900,12936,13200,13230,13524,13800,14100,15210,15246,15288,15600,15900,16500,16660
%N A332643 Neither the unsorted prime signature of a(n) nor the negated unsorted prime signature of a(n) is unimodal.
%C A332643 A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
%C A332643 A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
%H A332643 MathWorld, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a>
%F A332643 Intersection of A332282 and A332642.
%e A332643 The sequence of terms together with their prime indices begins:
%e A332643    2100: {1,1,2,3,3,4}
%e A332643    3300: {1,1,2,3,3,5}
%e A332643    3900: {1,1,2,3,3,6}
%e A332643    4200: {1,1,1,2,3,3,4}
%e A332643    4410: {1,2,2,3,4,4}
%e A332643    5100: {1,1,2,3,3,7}
%e A332643    5700: {1,1,2,3,3,8}
%e A332643    6468: {1,1,2,4,4,5}
%e A332643    6600: {1,1,1,2,3,3,5}
%e A332643    6900: {1,1,2,3,3,9}
%e A332643    7644: {1,1,2,4,4,6}
%e A332643    7800: {1,1,1,2,3,3,6}
%e A332643    8400: {1,1,1,1,2,3,3,4}
%e A332643    8700: {1,1,2,3,3,10}
%e A332643    9300: {1,1,2,3,3,11}
%e A332643    9996: {1,1,2,4,4,7}
%e A332643   10200: {1,1,1,2,3,3,7}
%e A332643   10500: {1,1,2,3,3,3,4}
%e A332643   10780: {1,1,3,4,4,5}
%e A332643   10890: {1,2,2,3,5,5}
%t A332643 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
%t A332643 Select[Range[10000],!unimodQ[Last/@FactorInteger[#]]&&!unimodQ[-Last/@FactorInteger[#]]&]
%Y A332643 Not requiring non-unimodal negation gives A332282.
%Y A332643 These are the Heinz numbers of the partitions counted by A332640.
%Y A332643 Not requiring non-unimodality gives A332642.
%Y A332643 The case of compositions is A332870.
%Y A332643 Unimodal compositions are A001523.
%Y A332643 Non-unimodal permutations are A059204.
%Y A332643 Non-unimodal compositions are A115981.
%Y A332643 Unsorted prime signature is A124010.
%Y A332643 Non-unimodal normal sequences are A328509.
%Y A332643 Partitions whose 0-appended first differences are unimodal are A332283, with Heinz numbers the complement of A332287.
%Y A332643 Compositions whose negation is unimodal are A332578.
%Y A332643 Compositions whose negation is not unimodal are A332669.
%Y A332643 Partitions whose 0-appended first differences are not unimodal are A332744, with Heinz numbers A332832.
%Y A332643 Numbers whose signature is neither increasing nor decreasing are A332831.
%Y A332643 Cf. A007052, A056239, A072704, A112798, A242031, A242414, A332280, A332281, A332288, A332294, A332639, A332728, A332742.
%K A332643 nonn
%O A332643 1,1
%A A332643 _Gus Wiseman_, Feb 28 2020