This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332643 #9 Feb 16 2025 08:33:59 %S A332643 2100,3300,3900,4200,4410,5100,5700,6468,6600,6900,7644,7800,8400, %T A332643 8700,9300,9996,10200,10500,10780,10890,11100,11172,11400,12300,12740, %U A332643 12900,12936,13200,13230,13524,13800,14100,15210,15246,15288,15600,15900,16500,16660 %N A332643 Neither the unsorted prime signature of a(n) nor the negated unsorted prime signature of a(n) is unimodal. %C A332643 A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %C A332643 A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization. %H A332643 MathWorld, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %F A332643 Intersection of A332282 and A332642. %e A332643 The sequence of terms together with their prime indices begins: %e A332643 2100: {1,1,2,3,3,4} %e A332643 3300: {1,1,2,3,3,5} %e A332643 3900: {1,1,2,3,3,6} %e A332643 4200: {1,1,1,2,3,3,4} %e A332643 4410: {1,2,2,3,4,4} %e A332643 5100: {1,1,2,3,3,7} %e A332643 5700: {1,1,2,3,3,8} %e A332643 6468: {1,1,2,4,4,5} %e A332643 6600: {1,1,1,2,3,3,5} %e A332643 6900: {1,1,2,3,3,9} %e A332643 7644: {1,1,2,4,4,6} %e A332643 7800: {1,1,1,2,3,3,6} %e A332643 8400: {1,1,1,1,2,3,3,4} %e A332643 8700: {1,1,2,3,3,10} %e A332643 9300: {1,1,2,3,3,11} %e A332643 9996: {1,1,2,4,4,7} %e A332643 10200: {1,1,1,2,3,3,7} %e A332643 10500: {1,1,2,3,3,3,4} %e A332643 10780: {1,1,3,4,4,5} %e A332643 10890: {1,2,2,3,5,5} %t A332643 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]] %t A332643 Select[Range[10000],!unimodQ[Last/@FactorInteger[#]]&&!unimodQ[-Last/@FactorInteger[#]]&] %Y A332643 Not requiring non-unimodal negation gives A332282. %Y A332643 These are the Heinz numbers of the partitions counted by A332640. %Y A332643 Not requiring non-unimodality gives A332642. %Y A332643 The case of compositions is A332870. %Y A332643 Unimodal compositions are A001523. %Y A332643 Non-unimodal permutations are A059204. %Y A332643 Non-unimodal compositions are A115981. %Y A332643 Unsorted prime signature is A124010. %Y A332643 Non-unimodal normal sequences are A328509. %Y A332643 Partitions whose 0-appended first differences are unimodal are A332283, with Heinz numbers the complement of A332287. %Y A332643 Compositions whose negation is unimodal are A332578. %Y A332643 Compositions whose negation is not unimodal are A332669. %Y A332643 Partitions whose 0-appended first differences are not unimodal are A332744, with Heinz numbers A332832. %Y A332643 Numbers whose signature is neither increasing nor decreasing are A332831. %Y A332643 Cf. A007052, A056239, A072704, A112798, A242031, A242414, A332280, A332281, A332288, A332294, A332639, A332728, A332742. %K A332643 nonn %O A332643 1,1 %A A332643 _Gus Wiseman_, Feb 28 2020