This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332648 #10 Dec 23 2020 01:51:23 %S A332648 1,1,1,1,1,1,1,1,2,1,1,1,2,4,1,1,1,3,5,9,1,1,1,3,11,13,20,1,1,1,4,13, %T A332648 46,37,48,1,1,1,4,22,62,208,111,115,1,1,1,5,25,140,333,1002,345,286,1, %U A332648 1,1,5,37,176,985,1894,5012,1105,719,1,1,1,6,41,319,1397,7374,11258,25863,3624,1842,1 %N A332648 Array read by antidiagonals: T(n,k) is the number of rooted unlabeled k-gonal cacti having n polygons. %C A332648 The number of nodes will be n*(k-1) + 1. %H A332648 Andrew Howroyd, <a href="/A332648/b332648.txt">Table of n, a(n) for n = 0..1325</a> %H A332648 Maryam Bahrani and Jérémie Lumbroso, <a href="http://arxiv.org/abs/1608.01465">Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition</a>, arXiv:1608.01465 [math.CO], 2016. %H A332648 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cactus_graph">Cactus graph</a> %H A332648 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a> %e A332648 Array begins: %e A332648 ====================================================== %e A332648 n\k | 1 2 3 4 5 6 7 8 %e A332648 ----+------------------------------------------------- %e A332648 0 | 1 1 1 1 1 1 1 1 ... %e A332648 1 | 1 1 1 1 1 1 1 1 ... %e A332648 2 | 1 2 2 3 3 4 4 5 ... %e A332648 3 | 1 4 5 11 13 22 25 37 ... %e A332648 4 | 1 9 13 46 62 140 176 319 ... %e A332648 5 | 1 20 37 208 333 985 1397 3059 ... %e A332648 6 | 1 48 111 1002 1894 7374 11757 31195 ... %e A332648 7 | 1 115 345 5012 11258 57577 103376 331991 ... %e A332648 8 | 1 286 1105 25863 68990 463670 937179 3643790 ... %e A332648 ... %o A332648 (PARI) %o A332648 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A332648 R(n,k)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec((g^k + g^(k%2)*subst(g^(k\2), x, x^2))/2))); concat([1], v)} %o A332648 T(n)={Mat(concat([vectorv(n+1,i,1)], vector(n,k,Col(R(n,k)))))} %o A332648 { my(A=T(8)); for(n=1, #A, print(A[n,])) } %Y A332648 Columns k=1..4 are A000012, A000081(n+1), A003080, A287891. %Y A332648 Cf. A303694, A332649. %K A332648 nonn,tabl %O A332648 0,9 %A A332648 _Andrew Howroyd_, Feb 18 2020