This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332662 #27 Oct 13 2024 07:06:14 %S A332662 0,0,0,1,1,0,2,0,0,2,1,1,2,1,3,0,4,0,5,0,0,3,1,2,2,2,3,1,4,1,5,1,6,0, %T A332662 7,0,8,0,9,0,0,4,1,3,2,3,3,2,4,2,5,2,6,1,7,1,8,1,9,1,10,0,11,0,12,0, %U A332662 13,0,14,0,0,5,1,4,2,4,3,3,4,3,5,3,6,2,7,2 %N A332662 Put-and-count: An enumeration of N X N where N = {0, 1, 2, ...}. The terms are interleaved x and y coordinates. Or: A row-wise storage scheme for sequences of regular triangles. %C A332662 Other enumerations of N X N designed with storage allocation for extensible arrays in mind include A319514 and A319571. %H A332662 Peter Luschny, <a href="/A332662/b332662.txt">Table of n, a(n) for n = 0..10000</a> %e A332662 Illustrating the linear storage layout of a sequence of regular triangles. %e A332662 (A) [ 0], [ 2, 3], [ 7, 8, 9], [16, 17, 18, 19], [30, 31, 32, 33, 34], ... %e A332662 (B) [ 1], [ 5, 6], [13, 14, 15], [26, 27, 28, 29], ... %e A332662 (C) [ 4], [11, 12], [23, 24, 25], ... %e A332662 (D) [10], [21, 22], ... %e A332662 (E) [20], ... %e A332662 ... %e A332662 The first column is A000292. %e A332662 The start values of all partial rows (in ascending order) are 0 plus A014370. %e A332662 The start values of the partial rows in the first row are A005581 (without first 0). %e A332662 The start values of the partial rows on the main diagonal are A331987. %e A332662 The end values of all partial rows (in ascending order) are A332023. %e A332662 The end values of the partial rows in the first row are A062748. %e A332662 The end values of the partial rows on the main diagonal are A332698. %p A332662 count := (k, A) -> ListTools:-Occurrences(k, A): t := n -> n*(n+1)/2: %p A332662 PutAndCount := proc(N) local L, n, v, c, seq; L := NULL; seq := NULL; %p A332662 for n from 1 to N do %p A332662 for v from 0 to t(n)-1 do %p A332662 # How often did you see v in this sequence before? %p A332662 c := count(v, [seq]); %p A332662 L := L, v, c; seq := seq, v; %p A332662 od od; L end: PutAndCount(6); %p A332662 # Returning 'seq' instead of 'L' gives the x-coordinates (A332663). %t A332662 t[n_] := n*(n+1)/2; %t A332662 PutAndCount[N_] := Module[{L, n, v, c, seq}, %t A332662 L = {}; seq = {}; %t A332662 For[n = 1, n <= N, n++, %t A332662 For[v = 0, v <= t[n]-1, v++, %t A332662 c = Count[seq, v]; %t A332662 L = Join[L, {v, c}]; seq = Append[seq, v] %t A332662 ]]; L]; %t A332662 PutAndCount[6] (* _Jean-François Alcover_, Oct 13 2024, after Maple program *) %o A332662 (Julia) %o A332662 function a_list(N) %o A332662 a = Int[] %o A332662 for n in 1:N %o A332662 i = 0 %o A332662 for j in ((k:-1:1) for k in 1:n) %o A332662 t = n - j[1] %o A332662 for m in j %o A332662 push!(a, i, t) %o A332662 i += 1 %o A332662 end end end; a end %o A332662 a_list(5) |> println %Y A332662 A332663 (x-coordinates), A056559 (y-coordinates). %Y A332662 Cf. A000292, A014370, A002260, A005581, A319514, A319571, A331987. %Y A332662 Cf. A332023, A062748, A332698. %K A332662 nonn %O A332662 0,7 %A A332662 _Peter Luschny_, Feb 18 2020