This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332669 #16 Feb 16 2025 08:33:59 %S A332669 0,0,0,0,1,3,11,28,71,165,372,807,1725,3611,7481,15345,31274,63392, %T A332669 128040,257865,518318,1040277,2085714,4178596,8367205,16748151, %U A332669 33515214,67056139,134147231,268341515,536746350,1073577185,2147266984,4294683056,8589563136,17179385180 %N A332669 Number of compositions of n whose negation is not unimodal. %C A332669 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %C A332669 A composition of n is a finite sequence of positive integers summing to n. %H A332669 Andrew Howroyd, <a href="/A332669/b332669.txt">Table of n, a(n) for n = 0..1000</a> %H A332669 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a>. %F A332669 a(n) + A332578(n) = 2^(n - 1) for n > 0. %e A332669 The a(4) = 1 through a(6) = 11 compositions: %e A332669 (121) (131) (132) %e A332669 (1121) (141) %e A332669 (1211) (231) %e A332669 (1131) %e A332669 (1212) %e A332669 (1221) %e A332669 (1311) %e A332669 (2121) %e A332669 (11121) %e A332669 (11211) %e A332669 (12111) %t A332669 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332669 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[-#]&]],{n,0,10}] %Y A332669 The strict case is A072707. %Y A332669 The complement is counted by A332578. %Y A332669 The version for run-lengths of partitions is A332639. %Y A332669 The version for unsorted prime signature is A332642. %Y A332669 The version for 0-appended first-differences of partitions is A332744. %Y A332669 The case that is not unimodal either is A332870. %Y A332669 Unimodal compositions are A001523. %Y A332669 Non-unimodal permutations are A059204. %Y A332669 Non-unimodal compositions are A115981. %Y A332669 Non-unimodal normal sequences are A328509. %Y A332669 Numbers whose unsorted prime signature is not unimodal are A332282. %Y A332669 A triangle for compositions with unimodal negation is A332670. %Y A332669 Cf. A007052, A072706, A227038, A329398, A332281, A332284, A332638, A332728, A332742, A332832. %K A332669 nonn %O A332669 0,6 %A A332669 _Gus Wiseman_, Feb 28 2020 %E A332669 Terms a(21) and beyond from _Andrew Howroyd_, Mar 01 2020