This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332672 #6 Feb 16 2025 08:33:59 %S A332672 0,0,0,0,0,0,0,2,3,0,0,6,0,0,6,16,0,21,0,12,10,0,0,48,16,0,81,20,0,48, %T A332672 0,104,15,0,30,162,0,0,21,104,0,90,0,30,198,0,0,336,65,124,28,42,0, %U A332672 603,50,190,36,0,0,396,0,0,405,688,77,150,0,56,45,260,0 %N A332672 Number of non-unimodal permutations of a multiset whose multiplicities are the prime indices of n. %C A332672 This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}. %C A332672 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %H A332672 MathWorld, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %F A332672 a(n) = A332671(A181821(n)). %F A332672 a(n) + A332294(n) = A318762(n). %e A332672 The a(n) permutations for n = 8, 9, 12, 15, 16: %e A332672 213 1212 1213 11212 1324 %e A332672 312 2112 1312 12112 1423 %e A332672 2121 2113 12121 2134 %e A332672 2131 21112 2143 %e A332672 3112 21121 2314 %e A332672 3121 21211 2413 %e A332672 3124 %e A332672 3142 %e A332672 3214 %e A332672 3241 %e A332672 3412 %e A332672 4123 %e A332672 4132 %e A332672 4213 %e A332672 4231 %e A332672 4312 %t A332672 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A332672 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332672 Table[Length[Select[Permutations[nrmptn[n]],!unimodQ[#]&]],{n,30}] %Y A332672 Positions of zeros are one and A001751. %Y A332672 Support is A264828 without one. %Y A332672 Dominated by A318762. %Y A332672 The complement is counted by A332294. %Y A332672 A less interesting version is A332671. %Y A332672 The opposite version is A332742. %Y A332672 Unimodal compositions are A001523. %Y A332672 Non-unimodal permutations are A059204. %Y A332672 Non-unimodal compositions are A115981. %Y A332672 Non-unimodal normal sequences are A328509. %Y A332672 Heinz numbers of partitions with non-unimodal run-lengths are A332282. %Y A332672 Compositions whose negation is not unimodal are A332669. %Y A332672 Cf. A007052, A008480, A056239, A112798, A124010, A181819, A181821, A332281, A332287, A332294, A332642, A332741. %K A332672 nonn %O A332672 1,8 %A A332672 _Gus Wiseman_, Feb 23 2020