This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332673 #8 Feb 17 2023 11:49:36 %S A332673 1,0,1,0,1,2,0,1,6,3,0,1,14,14,5,0,1,30,45,32,8,0,1,62,124,131,65,13, %T A332673 0,1,126,315,438,323,128,21,0,1,254,762,1305,1270,747,243,34,0,1,510, %U A332673 1785,3612,4346,3370,1629,452,55 %N A332673 Triangle read by rows where T(n,k) is the number of length-k ordered set partitions of {1..n} whose non-adjacent blocks are pairwise increasing. %C A332673 In other words, parts of subsequent, non-successive blocks are increasing. %e A332673 Triangle begins: %e A332673 1 %e A332673 0 1 %e A332673 0 1 2 %e A332673 0 1 6 3 %e A332673 0 1 14 14 5 %e A332673 0 1 30 45 32 8 %e A332673 0 1 62 124 131 65 13 %e A332673 0 1 126 315 438 323 128 21 %e A332673 0 1 254 762 1305 1270 747 243 34 %e A332673 ... %e A332673 Row n = 4 counts the following ordered set partitions: %e A332673 {1234} {1}{234} {1}{2}{34} {1}{2}{3}{4} %e A332673 {12}{34} {1}{23}{4} {1}{2}{4}{3} %e A332673 {123}{4} {12}{3}{4} {1}{3}{2}{4} %e A332673 {124}{3} {1}{24}{3} {2}{1}{3}{4} %e A332673 {13}{24} {12}{4}{3} {2}{1}{4}{3} %e A332673 {134}{2} {1}{3}{24} %e A332673 {14}{23} {13}{2}{4} %e A332673 {2}{134} {1}{34}{2} %e A332673 {23}{14} {1}{4}{23} %e A332673 {234}{1} {2}{1}{34} %e A332673 {24}{13} {2}{13}{4} %e A332673 {3}{124} {2}{14}{3} %e A332673 {34}{12} {23}{1}{4} %e A332673 {4}{123} {3}{12}{4} %t A332673 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A332673 Table[Length[Select[Join@@Permutations/@sps[Range[n]],Length[#]==k&&!MatchQ[#,{___,{___,a_,___},__,{___,b_,___},___}/;a>b]&]],{n,0,5},{k,0,n}] %Y A332673 An apparently related triangle is A056242. %Y A332673 Column k = n - 1 is A332724. %Y A332673 Row sums are A332872, which appears to be A007052 shifted right once. %Y A332673 Ordered set-partitions are A000670. %Y A332673 Unimodal compositions are A001523. %Y A332673 Non-unimodal normal sequences are A328509. %Y A332673 Cf. A072704, A097805, A107429, A227038, A332280, A332283, A332288, A332577. %K A332673 nonn,tabl %O A332673 0,6 %A A332673 _Gus Wiseman_, Mar 02 2020