A332675 Prime numbers p_k such that p_k == 3 (mod 10) and p_(k+1) == 1 (mod 10).
523, 683, 743, 983, 1163, 1193, 1373, 1523, 1733, 1823, 1913, 2003, 2153, 2213, 2243, 2273, 2503, 2663, 2843, 3623, 3803, 4373, 4423, 4463, 4583, 4603, 4703, 4733, 4943, 5483, 5573, 5693, 5783, 5813, 5953, 6113, 6143, 6203, 6473, 6833, 6983, 7393, 7433, 7673, 7883, 8093, 8513, 8573
Offset: 1
Keywords
Links
- R. J. Lemke Oliver and K. Soundararajan, Unexpected biases in the distribution of consecutive primes, arXiv:1603.03720 [math.NT], 2016.
- R. J. Lemke Oliver and K. Soundararajan, Unexpected biases in the distribution of consecutive primes, Proceedings of the National Academy of Sciences of the United States of America, Vol. 113, No. 31 (2016), E4446-E4454.
Crossrefs
Programs
-
Mathematica
First @ Transpose @ Select[Partition[Select[Range[10^4], PrimeQ], 2, 1], Mod[First[#], 10] == 3 && Mod[Last[#], 10] == 1 &] (* Amiram Eldar, Feb 19 2020 *)