cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332674 Prime numbers p_k such that p_k == 1 (mod 10) and p_(k+1) == 9 (mod 10).

Original entry on oeis.org

401, 491, 701, 761, 911, 1381, 1571, 2161, 2531, 2741, 2861, 2971, 3011, 3041, 3221, 3271, 3491, 3701, 3881, 4751, 5051, 5171, 6011, 6221, 6451, 6521, 6581, 7151, 7351, 7621, 7691, 8171, 8191, 8681, 8761, 8971, 9311, 9941, 10151, 10391, 10531, 10631, 10691
Offset: 1

Views

Author

A.H.M. Smeets, Feb 19 2020

Keywords

Crossrefs

Cf. A030430 (1, any), A330366 (1, 1), A331555 (1, 3), A331324 (1, 7), this sequence (1, 9), A030431 (3, any), A332675 (3, 1), A332676 (3, 3), A030432 (7, any), A030433 (9, any) [where (a, b) means p_k == a (mod 10) and p_(k+1) == b (mod 10)].

Programs

  • Maple
    select(p -> isprime(p) and nextprime(p) mod 10 = 9, [seq(i,i=1..20000,10)]); # Robert Israel, Jun 10 2024
  • Mathematica
    First @ Transpose @ Select[Partition[Select[Range[12500], PrimeQ], 2, 1], Mod[First[#], 10] == 1 && Mod[Last[#], 10] == 9 &] (* Amiram Eldar, Feb 19 2020 *)
  • PARI
    forprime(p=1+o=2,1e4,p%10==9&&o%10==1&&print1(o",");o=p) \\ M. F. Hasler, Feb 19 2020

A332675 Prime numbers p_k such that p_k == 3 (mod 10) and p_(k+1) == 1 (mod 10).

Original entry on oeis.org

523, 683, 743, 983, 1163, 1193, 1373, 1523, 1733, 1823, 1913, 2003, 2153, 2213, 2243, 2273, 2503, 2663, 2843, 3623, 3803, 4373, 4423, 4463, 4583, 4603, 4703, 4733, 4943, 5483, 5573, 5693, 5783, 5813, 5953, 6113, 6143, 6203, 6473, 6833, 6983, 7393, 7433, 7673, 7883, 8093, 8513, 8573
Offset: 1

Views

Author

A.H.M. Smeets, Feb 19 2020

Keywords

Crossrefs

Cf. A030430 (1, any), A330366 (1, 1), A331555 (1, 3), A331324 (1, 7), A332674 (1, 9), A030431 (3, any), this sequence (3, 1), A332676 (3, 3), A030432 (7, any), A030433 (9, any) [where (a, b) means p_k == a (mod 10) and p_(k+1) == b (mod 10)].

Programs

  • Mathematica
    First @ Transpose @ Select[Partition[Select[Range[10^4], PrimeQ], 2, 1], Mod[First[#], 10] == 3 && Mod[Last[#], 10] == 1 &] (* Amiram Eldar, Feb 19 2020 *)
Showing 1-2 of 2 results.