A332689 Number of distinct areas of integer-sided triangles whose area equals n times their perimeter.
5, 17, 41, 41, 47, 127, 77, 81, 171, 132, 99, 283, 94, 205, 349, 158, 115, 457, 122, 296, 530, 267, 134, 546, 219, 260, 428, 471, 130, 953, 144, 264, 613, 332, 557, 1031, 139, 346, 614, 600, 162, 1381, 169, 562, 1132, 348, 186, 1000, 363, 593, 688, 571, 164, 1123
Offset: 1
Keywords
Examples
For n = 2, there are 18 different (noncongruent) Heronian triangles whose area equals twice their perimeter, so A007237(2) = 18. However, two of those 18 triangles share the area 168. So there are only 17 distinct areas. Therefore, a(2) = 17.
Links
- James Grime and Brady Haran, Superhero Triangles, Numberphile video (2020).
Programs
-
Mathematica
a[k_] := Block[{v={},r,s,t}, Do[ If[r <= s && 4 k^2 < r s <= 12 k^2 && IntegerQ[t = 4 k^2 (r + s)/(r s - 4 k^2)] && t >= s, AppendTo[v, r + s + t]], {r, Floor[2 Sqrt[3] k]}, {s, Floor[4 k^2/r], Ceiling[12 k^2/r]}]; Length@ Union@ v]; Array[a, 20] (* Giovanni Resta, Mar 04 2020 *)
-
Python
from math import sqrt def A332689(n): L = []; k = 4*n*n for x in range(1, int(2*sqrt(3)*n) + 1): for y in range(max(int(k/x) + 1, x), int((k + 2*n*sqrt(k + x*x))/x) + 1): if k*(x+y)%(x*y-k) == 0: s = x + y + k*(x+y)//(x*y-k) if s not in L: L.append(s) return len(L) # Ya-Ping Lu, Dec 28 2023
Extensions
a(8)-a(54) from Giovanni Resta, Mar 04 2020
Comments