This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332691 #12 Feb 20 2020 17:41:47 %S A332691 1,13,147,1636,18124,199399,2314581,25461653,281178597,3192976395, %T A332691 35233852789,387573484456,4374418444135,48228613881184, %U A332691 541525753635894,5956784387951128,66635738355523786,743994232656361639,8285146556418623572,92246623188575957748 %N A332691 Bijective base-9 representation of the sum of all numbers in bijective base-9 numeration with digit sum n. %H A332691 Alois P. Heinz, <a href="/A332691/b332691.txt">Table of n, a(n) for n = 1..955</a> %H A332691 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bijective_numeration">Bijective numeration</a> %F A332691 a(n) = A052382(A332690(n)). %e A332691 a(2) = 13_bij9 = 12 = 2 + 10 = 2_bij9 + 11_bij9. %p A332691 b:= proc(n) option remember; `if`(n=0, [1, 0], add((p-> %p A332691 [p[1], p[2]*9+p[1]*d])(b(n-d)), d=1..min(n, 9))) %p A332691 end: %p A332691 g:= proc(n) local d, l, m; m, l:= n, ""; %p A332691 while m>0 do d:= irem(m, 9, 'm'); %p A332691 if d=0 then d:=9; m:= m-1 fi; l:= d, l %p A332691 od; parse(cat(l)) %p A332691 end: %p A332691 a:= n-> g(b(n)[2]): %p A332691 seq(a(n), n=1..23); %Y A332691 Cf. A007953, A016134, A052382, A211072, A214676, A332690. %K A332691 nonn,base %O A332691 1,2 %A A332691 _Alois P. Heinz_, Feb 19 2020