cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332700 A(n, k) = Sum_{j=0..n} j!*Stirling2(n, j)*(k-1)^(n-j), for n >= 0 and k >= 0, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 13, 4, 1, 1, 1, 120, 75, 22, 5, 1, 1, 1, 720, 541, 160, 33, 6, 1, 1, 1, 5040, 4683, 1456, 285, 46, 7, 1, 1, 1, 40320, 47293, 15904, 3081, 456, 61, 8, 1, 1, 1, 362880, 545835, 202672, 40005, 5656, 679, 78, 9, 1, 1
Offset: 0

Views

Author

Peter Luschny, Feb 28 2020

Keywords

Examples

			Array begins:
[0] 1, 1,       1,       1,        1,         1,         1, ...    A000012
[1] 1, 1,       1,       1,        1,         1,         1, ...    A000012
[2] 1, 2,       3,       4,        5,         6,         7, ...    A000027
[3] 1, 6,       13,      22,       33,        46,        61, ...   A028872
[4] 1, 24,      75,      160,      285,       456,       679, ...
[5] 1, 120,     541,     1456,     3081,      5656,      9445, ...
[6] 1, 720,     4683,    15904,    40005,     84336,     158095, ...
[7] 1, 5040,    47293,   202672,   606033,    1467376,   3088765, ...
[8] 1, 40320,   545835,  2951680,  10491885,  29175936,  68958295, ...
[9] 1, 362880,  7087261, 48361216, 204343641, 652606336, 1731875605, ...
       A000142, A000670, A122704,  A255927,   A326324, ...
Seen as a triangle:
[0] [1]
[1] [1, 1]
[2] [1, 1,     1]
[3] [1, 2,     1,     1]
[4] [1, 6,     3,     1,     1]
[5] [1, 24,    13,    4,     1,    1]
[6] [1, 120,   75,    22,    5,    1,   1]
[7] [1, 720,   541,   160,   33,   6,   1,  1]
[8] [1, 5040,  4683,  1456,  285,  46,  7,  1, 1]
[9] [1, 40320, 47293, 15904, 3081, 456, 61, 8, 1, 1]
		

Crossrefs

The matrix transpose of A326323.

Programs

  • Maple
    # Prints array by row.
    A := (n, k) -> add(combinat:-eulerian1(n, j)*k^j, j=0..n):
    seq(print(seq(A(n,k), k=0..10)), n=0..8);
    # Alternative:
    egf := n -> `if`(n=1, 1/(1-x), (n-1)/(n - exp((n-1)*x))):
    ser := n -> series(egf(n), x, 21):
    for n from 0 to 6 do seq(n!*coeff(ser(k), x, n), k=0..9) od;
    # Or:
    A := (n, k) -> if k = 0 or n = 0 then 1 elif k = 1 then n! else
    polylog(-n, 1/k)*(k-1)^(n+1)/k fi:
    for n from 0 to 6 do seq(A(n, k), k=0..9) od;
  • Mathematica
    A332700[n_, k_] := n! + Sum[j! StirlingS2[n, j] (k-1)^(n-j), {j, n-1}];
    Table[A332700[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 01 2024 *)
  • Sage
    def T(n, k):
        return sum(factorial(j)*stirling_number2(n, j)*(k-1)^(n-j) for j in range(n+1))
    for n in range(8): print([T(n, k) for k in range(8)])

Formula

A(n, k) = Sum_{j=0..n} E(n, j)*k^j, where E(n, k) = A173018(n, k).
A(n, 1) = n!*[x^n] 1/(1-x).
A(n, k) = n!*[x^n] (k-1)/(k - exp((k-1)*x)) for k != 1.
A(n, k) = PolyLog(-n, 1/k)*(k-1)^(n+1)/k for k >= 2.