This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332709 #33 Feb 01 2021 13:40:58 %S A332709 1,1,1,4,5,4,20,20,20,20,115,116,117,116,115,787,791,791,791,791,787, %T A332709 6184,6203,6204,6205,6204,6203,6184,54888,55000,55004,55004,55004, %U A332709 55004,55000,54888,542805,543576,543595,543596,543597,543596,543595,543576,542805 %N A332709 Triangle T(n,k) read by rows where T(n,k) is the number of ménage permutations that map 1 to k, with 3 <= k <= n. %C A332709 Rows are palindromic. %C A332709 Conjecture: Rows are unimodal (i.e., increasing, then decreasing). %C A332709 Conjecture: T(n,k) - T(n,k-1) = A127548(n-2k+4) for n >= 2k - 3. - _Peter Kagey_, Jan 22 2021 %H A332709 Peter Kagey, <a href="/A332709/b332709.txt">Table of n, a(n) for n = 3..1277</a> (first 50 rows) %F A332709 T(n,k) = Sum_{i=0..n-1} Sum_{j=max(k+i-n-1,0)..min(i,k-2)} (-1)^i*(n-i-1)! * binomial(2k-j-4,j) * binomial(2(n-k+1)-i+j,i-j). %e A332709 Triangle begins: %e A332709 n\k| 3 4 5 6 7 8 9 10 %e A332709 ---+-------------------------------------------------------- %e A332709 3 | 1 %e A332709 4 | 1, 1 %e A332709 5 | 4, 5, 4 %e A332709 6 | 20, 20, 20, 20 %e A332709 7 | 115, 116, 117, 116, 115 %e A332709 8 | 787, 791, 791, 791, 791, 787 %e A332709 9 | 6184, 6203, 6204, 6205, 6204, 6203, 6184 %e A332709 10 | 54888, 55000, 55004, 55004, 55004, 55004, 55000, 54888 %e A332709 For n=5 and k=3, the T(5,3)=4 permutations on five letters that start with a 3 are 31524, 34512, 35124, and 35212. %t A332709 T[n_, k_] := %t A332709 Sum[Sum[(-1)^i*(n - i - 1)!*Binomial[2*k - j - 4, j]* %t A332709 Binomial[2*(n - k + 1) - i + j, i - j], {j, Max[k + i - n - 1, 0], %t A332709 Min[i, k - 2]}], {i, 0, n - 1}] %t A332709 (* _Peter Kagey_, Jan 22 2021 *) %Y A332709 Cf. A127548. %Y A332709 First column given by A258664. %Y A332709 Second column given by A258665. %Y A332709 Third column given by A258666. %Y A332709 Fourth column given by A258667. %Y A332709 Row sums given by A000179. %K A332709 nonn,tabl %O A332709 3,4 %A A332709 _Peter Kagey_, Feb 20 2020