cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332709 Triangle T(n,k) read by rows where T(n,k) is the number of ménage permutations that map 1 to k, with 3 <= k <= n.

This page as a plain text file.
%I A332709 #33 Feb 01 2021 13:40:58
%S A332709 1,1,1,4,5,4,20,20,20,20,115,116,117,116,115,787,791,791,791,791,787,
%T A332709 6184,6203,6204,6205,6204,6203,6184,54888,55000,55004,55004,55004,
%U A332709 55004,55000,54888,542805,543576,543595,543596,543597,543596,543595,543576,542805
%N A332709 Triangle T(n,k) read by rows where T(n,k) is the number of ménage permutations that map 1 to k, with 3 <= k <= n.
%C A332709 Rows are palindromic.
%C A332709 Conjecture: Rows are unimodal (i.e., increasing, then decreasing).
%C A332709 Conjecture: T(n,k) - T(n,k-1) = A127548(n-2k+4) for n >= 2k - 3. - _Peter Kagey_, Jan 22 2021
%H A332709 Peter Kagey, <a href="/A332709/b332709.txt">Table of n, a(n) for n = 3..1277</a> (first 50 rows)
%F A332709 T(n,k) = Sum_{i=0..n-1} Sum_{j=max(k+i-n-1,0)..min(i,k-2)} (-1)^i*(n-i-1)! * binomial(2k-j-4,j) * binomial(2(n-k+1)-i+j,i-j).
%e A332709 Triangle begins:
%e A332709   n\k|     3      4      5      6      7      8      9     10
%e A332709   ---+--------------------------------------------------------
%e A332709    3 |     1
%e A332709    4 |     1,     1
%e A332709    5 |     4,     5,     4
%e A332709    6 |    20,    20,    20,    20
%e A332709    7 |   115,   116,   117,   116,   115
%e A332709    8 |   787,   791,   791,   791,   791,   787
%e A332709    9 |  6184,  6203,  6204,  6205,  6204,  6203,  6184
%e A332709   10 | 54888, 55000, 55004, 55004, 55004, 55004, 55000, 54888
%e A332709 For n=5 and k=3, the T(5,3)=4 permutations on five letters that start with a 3 are 31524, 34512, 35124, and 35212.
%t A332709 T[n_, k_] :=
%t A332709 Sum[Sum[(-1)^i*(n - i - 1)!*Binomial[2*k - j - 4, j]*
%t A332709     Binomial[2*(n - k + 1) - i + j, i - j], {j, Max[k + i - n - 1, 0],
%t A332709      Min[i, k - 2]}], {i, 0, n - 1}]
%t A332709 (* _Peter Kagey_, Jan 22 2021 *)
%Y A332709 Cf. A127548.
%Y A332709 First column given by A258664.
%Y A332709 Second column given by A258665.
%Y A332709 Third column given by A258666.
%Y A332709 Fourth column given by A258667.
%Y A332709 Row sums given by A000179.
%K A332709 nonn,tabl
%O A332709 3,4
%A A332709 _Peter Kagey_, Feb 20 2020