cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332719 Index position of {n}^3 within the list of partitions of 3n in canonical ordering.

This page as a plain text file.
%I A332719 #14 Jan 06 2021 02:12:39
%S A332719 1,3,8,19,44,93,187,357,657,1166,2015,3393,5594,9044,14378,22501,
%T A332719 34734,52931,79735,118823,175337,256347,371606,534377,762721,1080979,
%U A332719 1521925,2129330,2961580,4096006,5634855,7712558,10505457,14243772,19227383,25845241,34600673
%N A332719 Index position of {n}^3 within the list of partitions of 3n in canonical ordering.
%C A332719 The canonical ordering of partitions is described in A080577.
%H A332719 Alois P. Heinz, <a href="/A332719/b332719.txt">Table of n, a(n) for n = 0..4000</a>
%H A332719 Wikipedia, <a href="https://www.wikipedia.org/wiki/integer_partition">Integer Partition</a>
%F A332719 a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*Pi*sqrt(n)). - _Vaclav Kotesovec_, Feb 28 2020
%e A332719 a(2) = 8, because 222 has position 8 within the list of partitions of 6 in canonical ordering: 6, 51, 42, 411, 33, 321, 3111, 222, ... .
%p A332719 b:= proc(n, i) option remember;
%p A332719      `if`(n=0, 1, b(n-i, i)+g(n, i-1))
%p A332719     end:
%p A332719 g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
%p A332719      `if`(i<1, 0, g(n-i, min(n-i, i))+g(n, i-1)))
%p A332719     end:
%p A332719 a:= n-> g(3*n$2)-b(3*n, n)+1:
%p A332719 seq(a(n), n=0..37);
%t A332719 b[n_, i_] := b[n, i] = If[n == 0, 1, b[n - i, i] + g[n, i - 1]];
%t A332719 g[n_, i_] := g[n, i] = If[n == 0 || i == 1, 1, If[i < 1, 0, g[n - i, Min[n - i, i]] + g[n, i - 1]]];
%t A332719 a[n_] := g[3n, 3n] - b[3n, n] + 1;
%t A332719 a /@ Range[0, 37] (* _Jean-François Alcover_, Jan 06 2021, after _Alois P. Heinz_ *)
%Y A332719 Cf. A000041, A080577, A322761, A330661, A332706, A332720.
%K A332719 nonn
%O A332719 0,2
%A A332719 _Alois P. Heinz_, Feb 20 2020