cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332725 Heinz numbers of integer partitions whose negated first differences are not unimodal.

This page as a plain text file.
%I A332725 #5 Feb 16 2025 08:33:59
%S A332725 90,126,180,198,234,252,270,306,342,350,360,378,396,414,450,468,504,
%T A332725 522,525,540,550,558,594,612,630,650,666,684,700,702,720,738,756,774,
%U A332725 792,810,825,828,846,850,882,900,910,918,936,950,954,975,990,1008,1026,1044
%N A332725 Heinz numbers of integer partitions whose negated first differences are not unimodal.
%C A332725 A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
%C A332725 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%H A332725 MathWorld, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a>
%H A332725 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A332725 The sequence of terms together with their prime indices begins:
%e A332725     90: {1,2,2,3}
%e A332725    126: {1,2,2,4}
%e A332725    180: {1,1,2,2,3}
%e A332725    198: {1,2,2,5}
%e A332725    234: {1,2,2,6}
%e A332725    252: {1,1,2,2,4}
%e A332725    270: {1,2,2,2,3}
%e A332725    306: {1,2,2,7}
%e A332725    342: {1,2,2,8}
%e A332725    350: {1,3,3,4}
%e A332725    360: {1,1,1,2,2,3}
%e A332725    378: {1,2,2,2,4}
%e A332725    396: {1,1,2,2,5}
%e A332725    414: {1,2,2,9}
%e A332725    450: {1,2,2,3,3}
%e A332725    468: {1,1,2,2,6}
%e A332725    504: {1,1,1,2,2,4}
%e A332725    522: {1,2,2,10}
%e A332725    525: {2,3,3,4}
%e A332725    540: {1,1,2,2,2,3}
%e A332725 For example, 350 is the Heinz number of (4,3,3,1), with negated first differences (1,0,2), which is not unimodal, so 350 is in the sequence.
%t A332725 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A332725 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
%t A332725 Select[Range[1000],!unimodQ[Differences[primeMS[#]]]&]
%Y A332725 The complement is too full.
%Y A332725 The enumeration of these partitions by sum is A332284.
%Y A332725 The version where the last part is taken to be 0 is A332832.
%Y A332725 Non-unimodal permutations are A059204.
%Y A332725 Non-unimodal compositions are A115981.
%Y A332725 Non-unimodal normal sequences are A328509.
%Y A332725 Partitions with non-unimodal run-lengths are A332281.
%Y A332725 Heinz numbers of partitions with non-unimodal run-lengths are A332282.
%Y A332725 Heinz numbers of partitions with weakly increasing differences are A325360.
%Y A332725 Cf. A001523, A007052, A240026, A332280, A332283, A332285, A332286, A332288, A332294, A332579, A332639, A332642.
%K A332725 nonn
%O A332725 1,1
%A A332725 _Gus Wiseman_, Feb 26 2020