This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332725 #5 Feb 16 2025 08:33:59 %S A332725 90,126,180,198,234,252,270,306,342,350,360,378,396,414,450,468,504, %T A332725 522,525,540,550,558,594,612,630,650,666,684,700,702,720,738,756,774, %U A332725 792,810,825,828,846,850,882,900,910,918,936,950,954,975,990,1008,1026,1044 %N A332725 Heinz numbers of integer partitions whose negated first differences are not unimodal. %C A332725 A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %C A332725 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %H A332725 MathWorld, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %H A332725 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A332725 The sequence of terms together with their prime indices begins: %e A332725 90: {1,2,2,3} %e A332725 126: {1,2,2,4} %e A332725 180: {1,1,2,2,3} %e A332725 198: {1,2,2,5} %e A332725 234: {1,2,2,6} %e A332725 252: {1,1,2,2,4} %e A332725 270: {1,2,2,2,3} %e A332725 306: {1,2,2,7} %e A332725 342: {1,2,2,8} %e A332725 350: {1,3,3,4} %e A332725 360: {1,1,1,2,2,3} %e A332725 378: {1,2,2,2,4} %e A332725 396: {1,1,2,2,5} %e A332725 414: {1,2,2,9} %e A332725 450: {1,2,2,3,3} %e A332725 468: {1,1,2,2,6} %e A332725 504: {1,1,1,2,2,4} %e A332725 522: {1,2,2,10} %e A332725 525: {2,3,3,4} %e A332725 540: {1,1,2,2,2,3} %e A332725 For example, 350 is the Heinz number of (4,3,3,1), with negated first differences (1,0,2), which is not unimodal, so 350 is in the sequence. %t A332725 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A332725 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332725 Select[Range[1000],!unimodQ[Differences[primeMS[#]]]&] %Y A332725 The complement is too full. %Y A332725 The enumeration of these partitions by sum is A332284. %Y A332725 The version where the last part is taken to be 0 is A332832. %Y A332725 Non-unimodal permutations are A059204. %Y A332725 Non-unimodal compositions are A115981. %Y A332725 Non-unimodal normal sequences are A328509. %Y A332725 Partitions with non-unimodal run-lengths are A332281. %Y A332725 Heinz numbers of partitions with non-unimodal run-lengths are A332282. %Y A332725 Heinz numbers of partitions with weakly increasing differences are A325360. %Y A332725 Cf. A001523, A007052, A240026, A332280, A332283, A332285, A332286, A332288, A332294, A332579, A332639, A332642. %K A332725 nonn %O A332725 1,1 %A A332725 _Gus Wiseman_, Feb 26 2020