cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332728 Number of integer partitions of n whose negated first differences (assuming the last part is zero) are unimodal.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 22, 24, 28, 34, 37, 43, 53, 56, 64, 76, 83, 93, 111, 117, 131, 153, 163, 182, 210, 225, 250, 284, 304, 332, 377, 401, 441, 497, 529, 576, 647, 687, 745, 830, 883, 955, 1062, 1127, 1216, 1339, 1422, 1532, 1684, 1779, 1914
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2020

Keywords

Comments

First differs from A000041 at a(6) = 10, A000041(6) = 11.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(1) = 1 through a(8) = 10 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (321)     (421)      (332)
                                     (111111)  (2221)     (431)
                                               (1111111)  (521)
                                                          (2222)
                                                          (11111111)
		

Crossrefs

The non-negated version is A332283.
The non-negated complement is counted by A332284.
The strict case is A332577.
The case of run-lengths (instead of differences) is A332638.
The complement is counted by A332744.
The Heinz numbers of partitions not in this class are A332287.
Unimodal compositions are A001523.
Compositions whose negation is unimodal are A332578.
Compositions whose run-lengths are unimodal are A332726.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],unimodQ[-Differences[Append[#,0]]]&]],{n,0,30}]