cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332740 Prime numbers p such that the set of composite numbers in the range [p+1, nextprime(p)-1] has more than one element and all the elements have the same number of divisors.

Original entry on oeis.org

229, 8293, 9829, 14887, 16087, 20389, 21493, 44983, 50581, 53887, 57943, 63463, 64663, 72223, 81547, 93253, 108343, 134917, 138727, 143239, 157207, 192613, 199669, 203653, 206407, 210853, 218839, 244837, 248749, 251287, 255049, 262693, 280183, 296437, 300319
Offset: 1

Views

Author

Amiram Eldar, Feb 21 2020

Keywords

Comments

The corresponding numbers of divisors are 8, 16, 8, 8, 8, 8, 8, 8, 8, 16, 8, 8, 16, 24, 24, ... and the number of divisors in the order of their first appearance are 8, 16, 24, 20, 12, 32, 48, ...
The number of composites between a(n) and its next prime are 3, 3, 3, 3, 3, 3, 5, 3, 5, 3, ... Are there terms with number of composites larger than 5?

Examples

			229 is a term since between 229 and its next prime, 233, there are 3 composite numbers, 230, 231 and 232 and all of them have the same number of divisors, 8.
		

Crossrefs

Programs

  • Mathematica
    seqQ[n_] := PrimeQ[n] && (nx=NextPrime[n]) > n + 2 && Length @ Union @ DivisorSigma[0, Range[n+1, nx-1]] == 1; Select[Range[10^6], seqQ]