This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332742 #6 Feb 16 2025 08:33:59 %S A332742 0,0,0,0,0,1,0,2,3,2,0,8,0,3,7,16,0,24,0,16,12,4,0,52,16,5,81,26,0,54, %T A332742 0,104,18,6,31,168,0,7,25,112,0,99,0,38,201,8,0,344,65,132,33,52,0, %U A332742 612,52,202,42,9,0,408,0,10,411,688,80,162,0,68,52,272 %N A332742 Number of non-unimodal negated permutations of a multiset whose multiplicities are the prime indices of n. %C A332742 This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}. %C A332742 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %H A332742 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %F A332742 a(n) + A332741(n) = A318762(n). %e A332742 The a(n) permutations for n = 6, 8, 9, 10, 12, 14, 15, 16: %e A332742 121 132 1212 1121 1132 11121 11212 1243 %e A332742 231 1221 1211 1213 11211 11221 1324 %e A332742 2121 1231 12111 12112 1342 %e A332742 1312 12121 1423 %e A332742 1321 12211 1432 %e A332742 2131 21121 2143 %e A332742 2311 21211 2314 %e A332742 3121 2341 %e A332742 2413 %e A332742 2431 %e A332742 3142 %e A332742 3241 %e A332742 3412 %e A332742 3421 %e A332742 4132 %e A332742 4231 %t A332742 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A332742 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332742 Table[Length[Select[Permutations[nrmptn[n]],!unimodQ[#]&]],{n,30}] %Y A332742 Dominated by A318762. %Y A332742 The complement of the non-negated version is counted by A332294. %Y A332742 The non-negated version is A332672. %Y A332742 The complement is counted by A332741. %Y A332742 A less interesting version is A333146. %Y A332742 Unimodal compositions are A001523. %Y A332742 Unimodal normal sequences are A007052. %Y A332742 Non-unimodal normal sequences are A328509. %Y A332742 Partitions with non-unimodal 0-appended first differences are A332284. %Y A332742 Compositions whose negation is unimodal are A332578. %Y A332742 Partitions with non-unimodal negated run-lengths are A332639. %Y A332742 Numbers whose negated prime signature is not unimodal are A332642. %Y A332742 Cf. A056239, A112798, A115981, A124010, A181819, A181821, A304660, A332280, A332283, A332288, A332638, A332669, A333145. %K A332742 nonn %O A332742 1,8 %A A332742 _Gus Wiseman_, Mar 09 2020