This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332744 #16 Feb 16 2025 08:33:59 %S A332744 0,0,0,0,1,2,4,7,12,17,28,39,55,77,107,142,194,254,332,434,563,716, %T A332744 919,1162,1464,1841,2305,2857,3555,4383,5394,6617,8099,9859,12006, %U A332744 14551,17600,21236,25574,30688,36809,44007,52527,62574,74430,88304,104675,123799 %N A332744 Number of integer partitions of n whose negated first differences (assuming the last part is zero) are not unimodal. %C A332744 A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %H A332744 Fausto A. C. Cariboni, <a href="/A332744/b332744.txt">Table of n, a(n) for n = 0..600</a> %H A332744 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a>. %H A332744 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A332744 The a(4) = 1 through a(9) = 17 partitions: %e A332744 (211) (311) (411) (322) (422) (522) %e A332744 (2111) (2211) (511) (611) (711) %e A332744 (3111) (3211) (3221) (3222) %e A332744 (21111) (4111) (3311) (4221) %e A332744 (22111) (4211) (4311) %e A332744 (31111) (5111) (5211) %e A332744 (211111) (22211) (6111) %e A332744 (32111) (32211) %e A332744 (41111) (33111) %e A332744 (221111) (42111) %e A332744 (311111) (51111) %e A332744 (2111111) (222111) %e A332744 (321111) %e A332744 (411111) %e A332744 (2211111) %e A332744 (3111111) %e A332744 (21111111) %e A332744 For example, the partition y = (4,2,1,1,1) has negated 0-appended first differences (2,1,0,0,1), which is not unimodal, so y is counted under a(9). %t A332744 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332744 Table[Length[Select[IntegerPartitions[n],!unimodQ[-Differences[Append[#,0]]]&]],{n,0,30}] %Y A332744 The complement is counted by A332728. %Y A332744 The non-negated version is A332284. %Y A332744 The strict case is A332579. %Y A332744 The case of run-lengths (instead of differences) is A332639. %Y A332744 The Heinz numbers of these partitions are A332832. %Y A332744 Unimodal compositions are A001523. %Y A332744 Non-unimodal compositions are A115981. %Y A332744 Heinz numbers of partitions with non-unimodal run-lengths are A332282. %Y A332744 Partitions whose 0-appended first differences are unimodal are A332283. %Y A332744 Compositions whose negation is unimodal are A332578. %Y A332744 Numbers whose negated prime signature is not unimodal are A332642. %Y A332744 Compositions whose negation is not unimodal are A332669. %Y A332744 Cf. A059204, A227038, A332280, A332285, A332286, A332287, A332638, A332670, A332725, A332726. %K A332744 nonn %O A332744 0,6 %A A332744 _Gus Wiseman_, Feb 27 2020