cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332752 The number of permutations of {1,1,1,1,2,2,2,2,...,n,n,n,n} such that each quadruple of k's (k=1..n) is equally spaced with b(k) other elements in between, and b(1) >= b(2) >= ... >= b(n).

This page as a plain text file.
%I A332752 #24 Sep 27 2023 18:30:10
%S A332752 1,1,4,16,110,544,5444,32520,385776,3282108,40916528,354328560,
%T A332752 7200045216,67347823160,1182323197504,18086875471594,358787259407482,
%U A332752 4564034487662420
%N A332752 The number of permutations of {1,1,1,1,2,2,2,2,...,n,n,n,n} such that each quadruple of k's (k=1..n) is equally spaced with b(k) other elements in between, and b(1) >= b(2) >= ... >= b(n).
%e A332752 In case of n = 1.
%e A332752      |              | b(1)
%e A332752 -----+--------------+------
%e A332752    1 | [1, 1, 1, 1] | [0] *
%e A332752 In case of n = 2.
%e A332752      |                          | b(1),b(2)
%e A332752 -----+--------------------------+----------
%e A332752    1 | [2, 2, 2, 2, 1, 1, 1, 1] | [0, 0]
%e A332752    2 | [2, 1, 2, 1, 2, 1, 2, 1] | [1, 1]
%e A332752    3 | [1, 2, 1, 2, 1, 2, 1, 2] | [1, 1]
%e A332752    4 | [1, 1, 1, 1, 2, 2, 2, 2] | [0, 0]
%e A332752 In case of n = 3.
%e A332752      |                                      | b(1),b(2),b(3)
%e A332752 -----+--------------------------------------+---------------
%e A332752    1 | [3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1] | [0, 0, 0]
%e A332752    2 | [3, 3, 3, 3, 2, 1, 2, 1, 2, 1, 2, 1] | [1, 1, 0]
%e A332752    3 | [3, 3, 3, 3, 1, 2, 1, 2, 1, 2, 1, 2] | [1, 1, 0]
%e A332752    4 | [3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2] | [0, 0, 0]
%e A332752    5 | [3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1] | [2, 2, 2]
%e A332752    6 | [3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2] | [2, 2, 2]
%e A332752    7 | [2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1] | [2, 2, 2]
%e A332752    8 | [1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2] | [2, 2, 2]
%e A332752    9 | [2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3] | [2, 2, 2]
%e A332752   10 | [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3] | [2, 2, 2]
%e A332752   11 | [2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1] | [0, 0, 0]
%e A332752   12 | [1, 1, 1, 1, 3, 3, 3, 3, 2, 2, 2, 2] | [0, 0, 0]
%e A332752   13 | [2, 2, 2, 2, 1, 1, 1, 1, 3, 3, 3, 3] | [0, 0, 0]
%e A332752   14 | [2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 3, 3] | [1, 1, 0]
%e A332752   15 | [1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 3, 3] | [1, 1, 0]
%e A332752   16 | [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3] | [0, 0, 0]
%e A332752 * (strongly decreasing)
%Y A332752 Column 4 of A332762.
%Y A332752 Cf. A104430, A261517 (strongly decreasing), A285698, A322178, A332748, A332773, A332783, A332784.
%K A332752 nonn,more
%O A332752 0,3
%A A332752 _Seiichi Manyama_, Feb 22 2020
%E A332752 a(10)-a(17) from _Max Alekseyev_, Sep 27 2023