This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332754 #16 Oct 09 2020 05:17:38 %S A332754 0,1,1,2,4,6,14,21,49,77,175,287,637,1079,2353,4082,8788,15522,33098, %T A332754 59280,125476,227240,478192,873886,1830270,3370030,7030570,13027730, %U A332754 27088870,50469890,104647630,195892565,405187825,761615285,1571990935,2965576715 %N A332754 a(n) = Sum_{k=1..n-1} ((-1)^(k+n+1)*binomial(k,floor(k/2))). %C A332754 a(n) is the sum of the alternating series of central binomial coefficients (including all rows, defined as binomial(m,floor(m/2)) or equivalently binomial(m,ceiling(m/2)) for all m odd, A001405). %H A332754 Robert Israel, <a href="/A332754/b332754.txt">Table of n, a(n) for n = 1..3326</a> %F A332754 a(n) = Sum_{k=1..n-1} ((-1)^(k+n+1)*binomial(k,floor(k/2))). %F A332754 From _Robert Israel_, Oct 08 2020: (Start) %F A332754 D-finite with recurrence: (4*n - 8)*a(n - 3) + (-6 + 4*n)*a(n - 2) + (-n + 2)*a(n - 1) - n*a(n) = 0. %F A332754 G.f. (sqrt((1+2*x)/(1-2*x))-1-2*x)/(2+2*x). (End) %p A332754 f:= gfun:-rectoproc({(4*n + 4)*a(n) + (6 + 4*n)*a(n + 1) + (-n - 1)*a(n + 2) + (-n - 3)*a(n + 3), a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 1},a(n),remember): %p A332754 map(f, [$1..100]); # _Robert Israel_, Oct 08 2020 %t A332754 Sum[(-1)^(k + n + 1) Binomial[k, Floor[k/2]], {k, 1, -1 + n}] %o A332754 (PARI) a(n) = sum(k=1, n-1, (-1)^(k+n+1)*binomial(k, k\2)); \\ _Michel Marcus_, Feb 22 2020 %K A332754 nonn %O A332754 1,4 %A A332754 _Brian P Hawkins_, Feb 22 2020