This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332759 #26 Feb 27 2020 21:54:21 %S A332759 1,1,2,2,6,6,12,12,44,44,88,88,264,264,528,528,2064,2064,4128,4128, %T A332759 12384,12384,24768,24768,90816,90816,181632,181632,544896,544896, %U A332759 1089792,1089792,4292864,4292864,8585728,8585728,25757184,25757184,51514368,51514368 %N A332759 Number of involutions (plus identity) in a fixed Sylow 2-subgroup of the symmetric group of degree n. %C A332759 As the Sylow 2-subgroups of S_(2n) are isomorphic to those of S_(2n+1), the terms of this sequence come in pairs. %C A332759 Also the number of involutory automorphisms (including identity) of the full binary tree with n leaves (hence 2n-1 vertices) in which all left children are complete (perfect) binary trees. %F A332759 a(n) = Product(A332757(k)) where k ranges over the positions of 1 bits in the binary expansion of n. %F A332759 a(n) = big-Theta(C^n) for C = 1.6116626399..., i.e., A*C^n < a(n) < B*C^n for constants A, B (but it's not the case that a(n) ~ C^n as lim inf a(n)/C^n and lim sup a(n)/C^n differ). %F A332759 Conjecture: B=1 and A=0.409091077245262341747187571213565366725933766222357989... - _Vaclav Kotesovec_, Feb 26 2020 %e A332759 For n=4, the a(4)=6 elements satisfying x^2=1 in a fixed Sylow 2-subgroup of S_4 (which subgroup is isomorphic to the dihedral group of degree 4) are the identity and (13), (24), (12)(34), (13)(24), (14)(23). %p A332759 b:= proc(n) b(n):=`if`(n=0, 1, b(n-1)^2+2^(2^(n-1)-1)) end: %p A332759 a:= n-> (l-> mul(`if`(l[i]=1, b(i-1), 1), i=1..nops(l)))(Bits[Split](n)): %p A332759 seq(a(n), n=0..50); # _Alois P. Heinz_, Feb 27 2020 %t A332759 Join[{1}, Block[{nn = 33, s}, s = Nest[Append[#1, #1[[-1]]^2 + 2^(2^(#2 - 1) - 1)] & @@ {#, Length@ #} &, {1}, Ceiling@ Log2@ nn]; Array[Times @@ s[[Position[Reverse@ IntegerDigits[#, 2], 1][[All, 1]] ]] &, nn]]] (* _Michael De Vlieger_, Feb 25 2020 *) %Y A332759 Cf. A000085. %K A332759 nonn %O A332759 0,3 %A A332759 _Nick Krempel_, Feb 22 2020 %E A332759 More terms from _Alois P. Heinz_, Feb 27 2020