A332769 Permutation of the positive integers: a(n) = A258996(A054429(n)) = A054429(A258996(n)).
1, 3, 2, 5, 4, 7, 6, 13, 12, 15, 14, 9, 8, 11, 10, 21, 20, 23, 22, 17, 16, 19, 18, 29, 28, 31, 30, 25, 24, 27, 26, 53, 52, 55, 54, 49, 48, 51, 50, 61, 60, 63, 62, 57, 56, 59, 58, 37, 36, 39, 38, 33, 32, 35, 34, 45, 44
Offset: 1
Keywords
Examples
n = 23 = 10111_2 x x 10010_2 = 18 = a(n). n = 33 = 100001_2 x x x 110100_2 = 52 = a(n).
Links
- Yosu Yurramendi, Table of n, a(n) for n = 1..8191
Programs
-
PARI
a(n) = bitxor(n, 2<
Kevin Ryde, Mar 30 2021 -
R
maxrow <- 6 # by choice a <- 1 for(m in 0:maxrow) for(k in 0:(2^m-1)){ a[2^(m+1)+2*k ] <- 2*a[2^(m+1)-1-k] + 1 a[2^(m+1)+2*k+1] <- 2*a[2^(m+1)-1-k] } a
-
R
# Given n, compute a(n) by taking into account the binary representation of n maxblock <- 7 # by choice a <- c(1, 3, 2) for(n in 4:2^maxblock){ ones <- which(as.integer(intToBits(n)) == 1) nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)] anbit <- nbit anbit[seq(1, length(anbit) - 1, 2)] <- 1 - anbit[seq(1, length(anbit) - 1, 2)] a <- c(a, sum(anbit*2^(0:(length(anbit) - 1)))) } a # Yosu Yurramendi, Mar 30 2021
Formula
a(1) = 1; for m >= 0 and 0 <= k < 2^m, a(2^(m+1)+2*k) = 2*a(2^(m+1)-1-k) + 1, a(2^(m+1)+2*k+1) = 2*a(2^(m+1)-1-k).
Comments