This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332783 #41 Sep 26 2023 14:01:43 %S A332783 1,4,16,104,484,4848,25104,300336,2335296,27953952,198725952, %T A332783 4731323904,33020828928,606237831936,8936541384192,174694058933760, %U A332783 1628654065588224,56338295740213248,545177455792662528,20766878061520306176,340162958990367645696 %N A332783 The number of permutations of {(n+1) 1's, (n+1) 2's, ..., (n+1) n's} with the property that k's are equally spaced for k=1..n and the interval of k+1 is less than or equal to the interval of k for k=1..n-1. %e A332783 Define the interval of k as b(k). %e A332783 In case of n = 1. %e A332783 | | b(1) %e A332783 -----+--------+----- %e A332783 1 | [1, 1] | [0] %e A332783 In case of n = 2. %e A332783 | | b(1),b(2) %e A332783 -----+--------------------+---------- %e A332783 1 | [2, 2, 2, 1, 1, 1] | [0, 0] %e A332783 2 | [2, 1, 2, 1, 2, 1] | [1, 1] %e A332783 3 | [1, 2, 1, 2, 1, 2] | [1, 1] %e A332783 4 | [1, 1, 1, 2, 2, 2] | [0, 0] %e A332783 In case of n = 3. %e A332783 | | b(1),b(2),b(3) %e A332783 -----+--------------------------------------+--------------- %e A332783 1 | [3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1] | [0, 0, 0] %e A332783 2 | [3, 3, 3, 3, 2, 1, 2, 1, 2, 1, 2, 1] | [1, 1, 0] %e A332783 3 | [3, 3, 3, 3, 1, 2, 1, 2, 1, 2, 1, 2] | [1, 1, 0] %e A332783 4 | [3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2] | [0, 0, 0] %e A332783 5 | [3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1] | [2, 2, 2] %e A332783 6 | [3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2] | [2, 2, 2] %e A332783 7 | [2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1] | [2, 2, 2] %e A332783 8 | [1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2] | [2, 2, 2] %e A332783 9 | [2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3] | [2, 2, 2] %e A332783 10 | [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3] | [2, 2, 2] %e A332783 11 | [2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1] | [0, 0, 0] %e A332783 12 | [1, 1, 1, 1, 3, 3, 3, 3, 2, 2, 2, 2] | [0, 0, 0] %e A332783 13 | [2, 2, 2, 2, 1, 1, 1, 1, 3, 3, 3, 3] | [0, 0, 0] %e A332783 14 | [2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 3, 3] | [1, 1, 0] %e A332783 15 | [1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 3, 3] | [1, 1, 0] %e A332783 16 | [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3] | [0, 0, 0] %o A332783 (Ruby) %o A332783 def search(a, num, d, k, n) %o A332783 if num == 0 %o A332783 @cnt += 1 %o A332783 else %o A332783 (k * n - k + 1).times{|i| %o A332783 if a[i] == 0 %o A332783 (i + d + 1..k * n - k + 1).each{|j| %o A332783 if (k - 1) * j - (k - 2) * i < k * n %o A332783 if (1..k - 1).all?{|m| a[m * j - (m - 1) * i] == 0} %o A332783 (0..k - 1).each{|m| a[m * j - (m - 1) * i] = num} %o A332783 search(a, num - 1, j - i - 1, k, n) %o A332783 (0..k - 1).each{|m| a[m * j - (m - 1) * i] = 0} %o A332783 end %o A332783 end %o A332783 } %o A332783 end %o A332783 } %o A332783 end %o A332783 end %o A332783 def A(k, n) %o A332783 a = [0] * k * n %o A332783 @cnt = 0 %o A332783 search(a, n, 0, k, n) %o A332783 @cnt %o A332783 end %o A332783 def A332783(n) %o A332783 (1..n).map{|i| A(i + 1, i)} %o A332783 end %o A332783 p A332783(5) %Y A332783 Cf. A104442, A332762, A332784, A322178, A332748, A332752, A332773. %K A332783 nonn %O A332783 1,2 %A A332783 _Seiichi Manyama_, Feb 23 2020 %E A332783 a(9)-a(17) from _Bert Dobbelaere_, Mar 08 2020 %E A332783 a(18)-a(21) from _Max Alekseyev_, Sep 26 2023