This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332786 #41 Sep 15 2024 02:25:54 %S A332786 0,3,3,61,25,137,343,32663,2357,74689,66671,5299069,2416531,115545821, %T A332786 106974277,637525199,74575583,1588674349,4496071973,3234136824109, %U A332786 1535024393629,5843920343363,5575228585159,1961561381531581,93953561866435,9016382638527647,2888981280567587,200248741591132607,96525489421136333 %N A332786 a(n) = numerator(-1/n + Sum_{k=1..n} 2^(k-1)/k). %C A332786 If p > 3 is a prime, then p^2 | a(p). %C A332786 Does the above statement follow from Wolstenholme's theorem? %C A332786 If p is a Wolstenholme prime (A088164), then p^3 | a(p). %C A332786 However, it should be noted that also 7^3 | a(7). %C A332786 Conjecture: there are no pseudoprimes m such that m^2 | a(m). %C A332786 Is 7^2 the only weak pseudoprime (i.e., a composite m such that m | a(m))? %H A332786 Robert Israel, <a href="/A332786/b332786.txt">Table of n, a(n) for n = 1..1367</a> %F A332786 a(n) = numerator(-2/n + S(n))/2 for odd n and a(n) = numerator(-2/n + S(n)) for even n, where S(n) = Sum_{k=1..n} 2^k/k, see A108866 / A229726. %F A332786 a(n) = numerator(Sum_{k=1..n} (2^(k-1)-1)/k + Sum_{k=1..n-1} 1/k), see A330718 / A330719 and A001008 / A002805. %e A332786 a(5) = numerator(-1/5 + 1/1+2/2+4/3+8/4+16/5) = numerator(128/15 - 1/5) = numerator(25/3) = 25. %p A332786 f:= proc(n) local k; numer(-1/n + add(2^(k-1)/k,k=1..n)) end proc: %p A332786 map(f, [$1..30]); # _Robert Israel_, Sep 15 2024 %t A332786 n = 30; Numerator[Accumulate @ Table[(2^(k-1))/k, {k, 1, n}] - 1/Range[n]] (* _Amiram Eldar_, Feb 24 2020 *) %o A332786 (PARI) a(n) = numerator(-1/n + sum(k=1, n, 2^(k-1)/k)); \\ _Michel Marcus_, Feb 24 2020 %Y A332786 Cf. A001008, A088164, A108866, A330718. %K A332786 nonn,frac %O A332786 1,2 %A A332786 _Thomas Ordowski_, Feb 24 2020 %E A332786 More terms from _Amiram Eldar_, Feb 24 2020