cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332790 Triangle read by rows: T(n,k) = 1 + 2*n + k + 5*k(n-k) for n >= 0, 0 <= k <= n.

This page as a plain text file.
%I A332790 #50 Mar 18 2020 04:17:59
%S A332790 1,3,4,5,11,7,7,18,19,10,9,25,31,27,13,11,32,43,44,35,16,13,39,55,61,
%T A332790 57,43,19,15,46,67,78,79,70,51,22,17,53,79,95,101,97,83,59,25,19,60,
%U A332790 91,112,123,124,115,96,67,28,21,67,103,129,145,151,147,133,109,75,31
%N A332790 Triangle read by rows: T(n,k) = 1 + 2*n + k + 5*k(n-k) for n >= 0, 0 <= k <= n.
%H A332790 Philip K. Hotchkiss, <a href="https://arxiv.org/abs/1907.11159">Generalized Rascal Triangles</a>, arXiv:1907.11159 [math.HO], 2019, Figure 8 p. 3.
%F A332790 T(n,k) = 1 + 2*n + k + 5*k*(n-k), n >= 0, 0 <= k <= n.
%e A332790 From _Jon E. Schoenfield_, Mar 14 2020: (Start)
%e A332790 .
%e A332790   n\k|  0    1    2    3    4    5    6    7    8    9   10
%e A332790   ---+-----------------------------------------------------
%e A332790    0 |  1
%e A332790    1 |  3    4
%e A332790    2 |  5   11    7
%e A332790    3 |  7   18   19   10
%e A332790    4 |  9   25   31   27   13
%e A332790    5 | 11   32   43   44   35   16
%e A332790    6 | 13   39   55   61   57   43   19
%e A332790    7 | 15   46   67   78   79   70   51   22
%e A332790    8 | 17   53   79   95  101   97   83   59   25
%e A332790    9 | 19   60   91  112  123  124  115   96   67   28
%e A332790   10 | 21   67  103  129  145  151  147  133  109   75   31
%e A332790   ...
%e A332790 (End)
%p A332790 :=proc(n, k)
%p A332790    if n<0 or k<0 or k>n then
%p A332790        0;
%p A332790    else
%p A332790        1+2*n+k+5*k*(n-k);
%p A332790    end if;
%t A332790 T[n_, k_]:=1+2*n+k+5*k*(n-k); Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
%Y A332790 Cf. A077028, A309555, A309557, A309559, A332963
%K A332790 nonn,tabl
%O A332790 0,2
%A A332790 _Philip K Hotchkiss_, Mar 04 2020