cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332793 a(1) = 1; a(n) = n * Sum_{d|n, d < n} (-1)^(n/d) * a(d) / d.

This page as a plain text file.
%I A332793 #22 Apr 04 2023 12:34:54
%S A332793 1,2,-3,8,-5,-6,-7,32,0,-10,-11,-24,-13,-14,15,128,-17,0,-19,-40,21,
%T A332793 -22,-23,-96,0,-26,0,-56,-29,30,-31,512,33,-34,35,0,-37,-38,39,-160,
%U A332793 -41,42,-43,-88,0,-46,-47,-384,0,0,51,-104,-53,0,55,-224,57,-58,-59,120
%N A332793 a(1) = 1; a(n) = n * Sum_{d|n, d < n} (-1)^(n/d) * a(d) / d.
%H A332793 Amiram Eldar, <a href="/A332793/b332793.txt">Table of n, a(n) for n = 1..10000</a>
%F A332793 G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} (-1)^k * k * A(x^k).
%F A332793 Dirichlet g.f.: 1 / (zeta(s-1) * (1 - 2^(2 - s))).
%F A332793 a(n) = Sum_{d|n} A327268(d).
%F A332793 Multiplicative with a(2^e) = 2^(2*e-1), and a(p^e) = -p if e=1 and 0 for e>1, for odd primes p. - _Amiram Eldar_, Dec 02 2020
%t A332793 a[1] = 1; a[n_] := n Sum[If[d < n, (-1)^(n/d) a[d]/d, 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 60}]
%t A332793 terms = 60; A[_] = 0; Do[A[x_] = x + Sum[(-1)^k k A[x^k], {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] // Rest
%t A332793 f[p_, e_] := If[p == 2, p^(2*e - 1), -p*Boole[e == 1]]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Dec 02 2020 *)
%Y A332793 Cf. A002129, A038838 (positions of 0's), A055615, A067856, A327268, A361987.
%Y A332793 Partial sums give A361982.
%Y A332793 Dirichlet inverse of A181983.
%K A332793 sign,mult
%O A332793 1,2
%A A332793 _Ilya Gutkovskiy_, Feb 24 2020