This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332797 #23 Aug 29 2025 16:42:26 %S A332797 23,529,667,713,851,943,989,1081,1219,1357,1403,1541,1633,1679,1817, %T A332797 1909,2047,2231,2323,2369,2461,2507,2599,2921,3013,3151,3197,3427, %U A332797 3473,3611,3749,3841,3979,4117,4163,4393,4439,4531,4577,4853,5129,5221,5267,5359,5497 %N A332797 Numbers whose smallest prime factor is 23. %C A332797 The asymptotic density of this sequence is 55296/7436429. - _Amiram Eldar_, Dec 06 2020 %D A332797 Emmanuel Desurvire, Classical and Quantum Information Theory: An Introduction for the Telecom Scientist, Cambridge University Press, 2009, table 20.5 p. 421. %H A332797 Amiram Eldar, <a href="/A332797/b332797.txt">Table of n, a(n) for n = 1..10000</a> %F A332797 a(n) = 23*A166063(n). %e A332797 a(2) = 23*23, a(3) = 23*29. %t A332797 23 * Select[Range[240], CoprimeQ[#, 9699690] &] (* _Amiram Eldar_, Feb 24 2020 *) %t A332797 Select[Range[6000],FactorInteger[#][[1,1]]==23&] (* _Harvey P. Dale_, Aug 29 2025 *) %o A332797 (Rexx) %o A332797 P = 23 ; S = P %o A332797 do N = P by 2 while length( S ) < 255 %o A332797 do I = 1 until P = X %o A332797 X = PRIME( I ) %o A332797 if P = X then leave I %o A332797 if N // X = 0 then iterate N %o A332797 end I %o A332797 S = S || ',' P*N %o A332797 end N %o A332797 say S ; return S %Y A332797 Cf. A084967 (5), A084968 (7), A084969 (11), A084970 (13), A332799 (17), A332798 (19), A166063 (23-rough numbers). %K A332797 nonn,easy,changed %O A332797 1,1 %A A332797 _Frank Ellermann_, Feb 24 2020