This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332815 #17 Mar 04 2020 18:08:24 %S A332815 1,2,3,4,5,6,9,8,7,10,15,12,25,18,27,16,13,14,21,20,35,30,45,24,49,50, %T A332815 75,36,125,54,81,32,11,26,39,28,65,42,63,40,91,70,105,60,175,90,135, %U A332815 48,169,98,147,100,245,150,225,72,343,250,375,108,625,162,243,64,17,22,33,52,55,78,117,56,77,130,195,84 %N A332815 a(n) = A108548(A005940(1+n)). %C A332815 This is variant of Doudna-sequence, A005940 and thus can be represented as a binary tree. Each child to the left is obtained by applying A332818 to the parent, and each child to the right is obtained by doubling the parent: %C A332815 1 %C A332815 | %C A332815 ...................2................... %C A332815 3 4 %C A332815 5......../ \........6 9......../ \........8 %C A332815 / \ / \ / \ / \ %C A332815 / \ / \ / \ / \ %C A332815 / \ / \ / \ / \ %C A332815 7 10 15 12 25 18 27 16 %C A332815 13 14 21 20 35 30 45 24 49 50 75 36 125 54 81 32 %C A332815 etc. %C A332815 Note the indexing: the sequence starts with a(0)=1, as is natural for sequences based on maps from base-2 expansion to prime factorization. This is %C A332815 in contrast to A005940, which for historical reasons starts from offset 1. %C A332815 For any n > 1, A332893(n) gives the value of the parent node. For any n >= 1, A332894(n) gives the distance to 1, and A332899(n) gives the number of odd numbers that occur (inclusively) on the path from 1 to n. %H A332815 Antti Karttunen, <a href="/A332815/b332815.txt">Table of n, a(n) for n = 0..8191</a> %H A332815 Antti Karttunen, <a href="/A332815/a332815.txt">Data supplement: n, a(n) computed for n = 0..65537</a> %H A332815 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A332815 a(n) = A108548(A005940(1+n)). %o A332815 (PARI) %o A332815 up_to = 26927; %o A332815 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940 %o A332815 A108546list(up_to) = { my(v=vector(up_to), p,q); v[1] = 2; v[2] = 3; v[3] = 5; for(n=4,up_to, p = v[n-2]; q = nextprime(1+p); while(q%4 != p%4, q=nextprime(1+q)); v[n] = q); (v); }; %o A332815 v108546 = A108546list(up_to); %o A332815 A108546(n) = v108546[n]; %o A332815 A108548(n) = { my(f=factor(n)); f[,1] = apply(A108546,apply(primepi,f[,1])); factorback(f); }; %o A332815 A332815(n) = A108548(A005940(1+n)); %Y A332815 Cf. A332816 (inverse permutation). %Y A332815 Cf. A005940, A108548, A332818, A332893, A332894, A332897, A332898, A332899. %Y A332815 Cf. A108546 (the left edge of the tree from 2 downward). %K A332815 nonn,tabf %O A332815 0,2 %A A332815 _Antti Karttunen_, Feb 28 2020