This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332858 #11 Mar 02 2020 07:20:43 %S A332858 1,46,1376,34662,808029,18239040,408622073,9219406943,211361047584, %T A332858 4951434599465,118953031062221,2937244849150543,74649387584172199, %U A332858 1954230833420758243,52717076107348326739,1465510610406405412331,41979421676766533788251,1238736596075658751908901 %N A332858 Number of entries in the ninth cycles of all permutations of [n] when cycles are ordered by decreasing lengths. %H A332858 Alois P. Heinz, <a href="/A332858/b332858.txt">Table of n, a(n) for n = 9..450</a> %H A332858 Andrew V. Sills, <a href="https://arxiv.org/abs/1912.05306">Integer Partitions Probability Distributions</a>, arXiv:1912.05306 [math.CO], 2019. %H A332858 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %p A332858 b:= proc(n, l) option remember; `if`(n=0, l[9], add((j-1)!*b(n-j, %p A332858 sort([l[], j], `>`)[1..9])*binomial(n-1, j-1), j=1..n)) %p A332858 end: %p A332858 a:= n-> b(n, [0$9]): %p A332858 seq(a(n), n=9..26); %t A332858 b[n_, l_] := b[n, l] = If[n == 0, l[[9]], Sum[(j-1)! b[n-j, ReverseSort[ Append[l, j]][[1 ;; 9]]] Binomial[n - 1, j - 1], {j, 1, n}]]; %t A332858 a[n_] := b[n, Table[0, {9}]]; %t A332858 a /@ Range[9, 26] (* _Jean-François Alcover_, Mar 01 2020, after _Alois P. Heinz_ *) %Y A332858 Column k=9 of A322384. %K A332858 nonn %O A332858 9,2 %A A332858 _Alois P. Heinz_, Feb 26 2020