cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332862 Array read by antidiagonals: T(m,n) = number of placements of zero or more dominoes on the m X n grid where no two empty squares are horizontally adjacent.

This page as a plain text file.
%I A332862 #26 Sep 11 2024 22:52:52
%S A332862 1,1,2,2,4,3,2,11,9,5,3,25,48,25,8,4,61,172,227,64,13,5,146,731,1427,
%T A332862 1054,169,21,7,351,2976,10388,11134,4921,441,34,9,844,12039,72751,
%U A332862 140555,88733,22944,1156,55,12,2028,49401,510779,1693116,1932067,701926,107017,3025,89
%N A332862 Array read by antidiagonals: T(m,n) = number of placements of zero or more dominoes on the m X n grid where no two empty squares are horizontally adjacent.
%C A332862 By symmetry this is the same as the number of placements of zero or more dominoes on the n X m grid where no two empty squares are vertically adjacent.
%C A332862 The number of positions of m X n Domineering where horizontal (Right) has no moves, also called Right ends. Domineering is a game in which players take turns placing dominoes on a grid, one player placing vertically and the other horizontally until the player to place cannot place a domino.
%C A332862 All rows and columns are linear recurrences with constant coefficients. An upper bound on the order of the recurrence for columns is A005418(n+1), which is the number of binary words of length n up to reversal. An upper bound on the order of the recurrence for rows is A032120(m). This upper bound is exact for at least 1 <= m <= 6. - _Andrew Howroyd_, Feb 28 2020
%H A332862 Andrew Howroyd, <a href="/A332862/b332862.txt">Table of n, a(n) for n = 1..378</a>
%H A332862 Bjorn Huntemann, Svenja Huntemann, Neil A. McKay, <a href="http://www2.unb.ca/~nmckay/oeis/CountingDomineering.sagews">SageMath code for Counting Domineering Positions</a>
%H A332862 Svenja Huntemann, Neil A. McKay, <a href="https://arxiv.org/abs/1909.12419">Counting Domineering Positions</a>, arXiv:1909.12419 [math.CO], 2019.
%e A332862 Table starts:
%e A332862   ===================================================================
%e A332862   m\n|  1    2      3       4         5           6             7
%e A332862   ---|---------------------------------------------------------------
%e A332862   1  |  1    1      2       2         3           4             5 ...
%e A332862   2  |  2    4     11      25        61         146           351 ...
%e A332862   3  |  3    9     48     172       731        2976         12039 ...
%e A332862   4  |  5   25    227    1427     10388       72751        510779 ...
%e A332862   5  |  8   64   1054   11134    140555     1693116      20414525 ...
%e A332862   6  | 13  169   4921   88733   1932067    40008789     831347033 ...
%e A332862   7  | 21  441  22944  701926  26425981   941088936   33656587715 ...
%e A332862   8  | 34 1156 107017 5567467 362036629 22168654178 1365206879940 ...
%e A332862   ...
%o A332862 (Sage) # See Bjorn Huntemann, Svenja Huntemann, Neil A. McKay link.
%o A332862 (PARI) \\ here R(n) is row 1 as vector.
%o A332862 R(n)={Vec((1+x+x^2)/(1-x^2-x^3)+O(x*x^n))}
%o A332862 F(b,r)={my(t=1); while(b, b=(b>>valuation(b,2))+1; my(s=valuation(b,2)); t*=r[s]; b>>=s+1); t}
%o A332862 step(v,f)={vector(#v, t, my(i=t-1); sum(j=0, #v-1, if(!bitand(i,j), v[1+j]*(f[#v-bitor(i,j)]))))}
%o A332862 T(m,n)={my(r=R(n), f=vector(2^n, i, F(i-1, r)), v=vector(2^n)); v[1]=1; for(k=2, m, v=step(v,f)); sum(j=0, #v-1, v[1+j]*f[#v-j])}
%o A332862 {for(m=1, 8, for(n=1, 8, print1(T(m,n), ", ")); print)} \\ _Andrew Howroyd_, Feb 28 2020
%Y A332862 Columns 1..3 are A000045, A007598, A054894.
%Y A332862 Rows 1..2 are A000931(n + 5), A329707.
%Y A332862 Main diagonal is A332865.
%Y A332862 Cf. A288026 (the number of placements of dominoes on an m X n grid where no two empty squares are horizontally or vertically adjacent).
%Y A332862 Cf. A005418, A032120.
%K A332862 nonn,tabl
%O A332862 1,3
%A A332862 _Neil A. McKay_, Feb 27 2020