This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332873 #11 Jan 28 2024 18:09:57 %S A332873 0,0,0,0,22,340,3954,44716,536858,7056252,102140970,1622267196, %T A332873 28090317226,526854073564,10641328363722,230283141084220, %U A332873 5315654511587498,130370766447282204,3385534661270087178,92801587312544823804,2677687796221222845802,81124824998424994578652 %N A332873 Number of non-unimodal, non-co-unimodal sequences of length n covering an initial interval of positive integers. %C A332873 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. It is co-unimodal if its negative is unimodal. %H A332873 Andrew Howroyd, <a href="/A332873/b332873.txt">Table of n, a(n) for n = 0..200</a> %F A332873 a(n) = A000670(n) + A000225(n) - 2*A007052(n-1) for n > 0. - _Andrew Howroyd_, Jan 28 2024 %e A332873 The a(4) = 22 sequences: %e A332873 (1,2,1,2) (2,3,1,3) %e A332873 (1,2,1,3) (2,3,1,4) %e A332873 (1,3,1,2) (2,4,1,3) %e A332873 (1,3,2,3) (3,1,2,1) %e A332873 (1,3,2,4) (3,1,3,2) %e A332873 (1,4,2,3) (3,1,4,2) %e A332873 (2,1,2,1) (3,2,3,1) %e A332873 (2,1,3,1) (3,2,4,1) %e A332873 (2,1,3,2) (3,4,1,2) %e A332873 (2,1,4,3) (4,1,3,2) %e A332873 (2,3,1,2) (4,2,3,1) %t A332873 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A332873 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332873 Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&&!unimodQ[-#]&]],{n,0,5}] %o A332873 (PARI) seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 6*x + 12*x^2 - 6*x^3)/((1 - x)*(1 - 2*x)*(1 - 4*x + 2*x^2)), -(n+1)) \\ _Andrew Howroyd_, Jan 28 2024 %Y A332873 Not requiring non-co-unimodality gives A328509. %Y A332873 Not requiring non-unimodality also gives A328509. %Y A332873 The version for run-lengths of partitions is A332640. %Y A332873 The version for unsorted prime signature is A332643. %Y A332873 The version for compositions is A332870. %Y A332873 Unimodal compositions are A001523. %Y A332873 Unimodal sequences covering an initial interval are A007052. %Y A332873 Non-unimodal permutations are A059204. %Y A332873 Non-unimodal compositions are A115981. %Y A332873 Unimodal compositions covering an initial interval are A227038. %Y A332873 Numbers whose unsorted prime signature is not unimodal are A332282. %Y A332873 Numbers whose negated prime signature is not unimodal are A332642. %Y A332873 Compositions whose run-lengths are not unimodal are A332727. %Y A332873 Non-unimodal compositions covering an initial interval are A332743. %Y A332873 Cf. A000225, A000670, A060223, A072704, A329398, A332281, A332284, A332577, A332578, A332639, A332672, A332834. %K A332873 nonn %O A332873 0,5 %A A332873 _Gus Wiseman_, Mar 03 2020 %E A332873 a(9) onwards from _Andrew Howroyd_, Jan 28 2024