This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332874 #14 Feb 16 2025 08:33:59 %S A332874 0,0,0,0,0,0,0,0,0,0,10,10,20,30,50,150,180,290,420,630,860,1828,2168, %T A332874 3326,4514,6530,8576,12188,20096,25314,35576,48062,65592,86752,117222, %U A332874 152060,237590,292346,402798,524596,711270,910606,1221204,1554382,2044460,2927124 %N A332874 Number of strict compositions of n that are neither unimodal nor is their negation. %C A332874 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %C A332874 A composition of n is a finite sequence of positive integers summing to n. It is strict if there are not repeated parts. %H A332874 Andrew Howroyd, <a href="/A332874/b332874.txt">Table of n, a(n) for n = 0..1000</a> %H A332874 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %F A332874 G.f.: Sum_{k>=4} (k! - 2^k + 2) * [y^k](Product_{j>=1} 1 + y*x^j). - _Andrew Howroyd_, Apr 16 2021 %e A332874 The a(10) = 10 through a(12) = 20 compositions: %e A332874 (1,3,2,4) (1,3,2,5) (1,3,2,6) %e A332874 (1,4,2,3) (1,5,2,3) (1,4,2,5) %e A332874 (2,1,4,3) (2,1,5,3) (1,5,2,4) %e A332874 (2,3,1,4) (2,3,1,5) (1,6,2,3) %e A332874 (2,4,1,3) (2,5,1,3) (2,1,5,4) %e A332874 (3,1,4,2) (3,1,5,2) (2,1,6,3) %e A332874 (3,2,4,1) (3,2,5,1) (2,3,1,6) %e A332874 (3,4,1,2) (3,5,1,2) (2,4,1,5) %e A332874 (4,1,3,2) (5,1,3,2) (2,5,1,4) %e A332874 (4,2,3,1) (5,2,3,1) (2,6,1,3) %e A332874 (3,1,6,2) %e A332874 (3,2,6,1) %e A332874 (3,6,1,2) %e A332874 (4,1,5,2) %e A332874 (4,2,5,1) %e A332874 (4,5,1,2) %e A332874 (5,1,4,2) %e A332874 (5,2,4,1) %e A332874 (6,1,3,2) %e A332874 (6,2,3,1) %t A332874 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332874 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!unimodQ[#]&&!unimodQ[-#]&]],{n,0,20}] %o A332874 (PARI) seq(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); Vec(sum(k=4, n, (k! - 2^k + 2)*polcoef(p,k,y)), -(n+1))} \\ _Andrew Howroyd_, Apr 16 2021 %Y A332874 The non-strict version for unsorted prime signature is A332643. %Y A332874 The non-strict version is A332870. %Y A332874 Unimodal compositions are A001523. %Y A332874 Non-unimodal compositions are A115981. %Y A332874 Non-unimodal normal sequences are A328509. %Y A332874 Compositions whose negation is unimodal are A332578. %Y A332874 Compositions whose negation is not unimodal are A332669. %Y A332874 Compositions with neither weakly increasing nor weakly decreasing run-lengths are A332833. %Y A332874 Compositions with weakly increasing or weakly decreasing run-lengths are A332835. %Y A332874 Cf. A007052, A072704, A227038, A329398, A332281, A332284, A332639, A332640, A332641, A332745, A332746, A332831, A332834. %K A332874 nonn %O A332874 0,11 %A A332874 _Gus Wiseman_, Mar 04 2020 %E A332874 Terms a(21) and beyond from _Andrew Howroyd_, Apr 16 2021