A332876 a(n) is the smallest positive multiple of n whose decimal expansion includes a digit (other than a trailing zero) whose removal yields a proper multiple of n.
12, 14, 36, 28, 105, 102, 147, 136, 108, 120, 242, 204, 286, 238, 330, 352, 374, 306, 2109, 140, 462, 484, 2047, 408, 150, 572, 594, 756, 3219, 360, 682, 864, 2937, 1326, 770, 792, 4107, 2128, 4329, 280, 3649, 1638, 3827, 1232, 990, 2530, 5217, 1344, 5439, 1050
Offset: 1
Examples
a(7) = 147 because 147 = 7*21 and if we strike out "7", 14 is also divisible by 7, and there is no integer < 147 with that property.
References
- Roman Fedorov, Alexei Belov, Alexander Kovaldzhi, Ivan Yashchenko, Moscow Mathematical Olympiads, 2000-2005,Problem 3, Level D, 2004, MSRI, 2011, p. 21 and 130/131
Programs
-
Mathematica
del[n_] := Block[{m = 10^IntegerExponent[n, 10], d}, d = IntegerDigits[n/m]; Table[ FromDigits[Delete[d, k]] m, {k, Length@ d}]]; a[n_] := Block[{k = n, v}, While[! AnyTrue[del[k], # > n && Mod[#, n] == 0 &], k += n]; k]; Array[a, 50] (* Giovanni Resta, Feb 28 2020 *)
Extensions
More terms from Giovanni Resta, Feb 28 2020
Name improved by Rémy Sigrist and Jon E. Schoenfield, Feb 28 2020
Comments