A332878 a(1)=1; a(n+1) is the smallest number not yet seen in the sequence which is divisible by 1 + Omega(a(n)).
1, 2, 4, 3, 6, 9, 12, 8, 16, 5, 10, 15, 18, 20, 24, 25, 21, 27, 28, 32, 30, 36, 35, 33, 39, 42, 40, 45, 44, 48, 54, 50, 52, 56, 55, 51, 57, 60, 65, 63, 64, 7, 14, 66, 68, 72, 78, 76, 80, 84, 70, 88, 75, 92, 96, 49, 69, 81, 85, 87, 90, 95, 93, 99, 100, 105, 104
Offset: 1
Keywords
Examples
a(1) = 1 => 1 + Omega(a(1)) = 1, so a(2) must be 2. Then 1 + Omega(a(2)) = 2, so a(3) = 4. Since 1 + Omega(4) = 3, a(4) = 3; then 1 + Omega(3) = 2 and a(5) = 6, etc.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..10000
- M. F. Hasler, Scatterplot of a(1..40000).
Programs
-
Mathematica
a[1]=1; a[n_] := a[n] = Block[{s = Array[a, n-1], k, o = 1 + PrimeOmega@ a[n-1]}, k = o; While[ MemberQ[s, k], k += o]; k]; Array[a, 56] (* Giovanni Resta, Mar 04 2020 *)
-
PARI
{A332878_vec(N,a=1,u=1)=vector(N,n, a=n=bigomega(a)+1; while(bittest(u,a), a+=n); u+=1<M. F. Hasler, Mar 04 2020
Comments