cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332885 a(0) = a(1) = 1; a(n) = a(n-2) + Sum_{k=0..n-2} binomial(n-2,k) * a(k).

This page as a plain text file.
%I A332885 #37 Jul 05 2020 00:00:50
%S A332885 1,1,2,3,7,16,43,123,384,1283,4575,17294,69013,289613,1273934,5856811,
%T A332885 28070535,139936316,724141487,3882776711,21536499372,123388080843,
%U A332885 729195916303,4439611287834,27814781772073,179132776279001,1184720299683034,8038979166269203
%N A332885 a(0) = a(1) = 1; a(n) = a(n-2) + Sum_{k=0..n-2} binomial(n-2,k) * a(k).
%F A332885 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * (A(x) + (1/(1 - x)) * A(x/(1 - x))).
%t A332885 a[0] = a[1] = 1; a[n_] := a[n] = a[n - 2] + Sum[Binomial[n - 2, k] a[k], {k, 0, n - 2}]; Table[a[n], {n, 0, 27}]
%t A332885 nmax = 27; A[_] = 0; Do[A[x_] = 1 + x + x^2 (A[x] + (1/(1 - x)) A[x/(1 - x)]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%Y A332885 Cf. A000110, A007476, A040027.
%K A332885 nonn
%O A332885 0,3
%A A332885 _Ilya Gutkovskiy_, Jul 04 2020