A332889 a(n) = number of strict partition numbers >1 that are proper divisors of the n-th strict partition number.
0, 0, 0, 1, 0, 2, 2, 2, 4, 2, 3, 1, 1, 3, 1, 1, 5, 4, 3, 0, 3, 1, 1, 3, 8, 3, 5, 3, 4, 6, 5, 6, 3, 2, 7, 10, 1, 1, 9, 2, 4, 3, 7, 11, 3, 6, 9, 1, 0, 1, 9, 3, 3, 2, 1, 6, 11, 8, 2, 1, 7, 2, 6, 2, 4, 12, 3, 0, 4, 8, 4, 4, 1, 7, 0, 1, 9, 7, 5, 5, 1, 1, 6, 5, 4
Offset: 3
Keywords
Programs
-
Mathematica
p[n_] := PartitionsQ[n]; t[n_] := Table[p[k], {k, 0, n}] -2+Table[Length[Intersection[t[n], Divisors[p[n]]]], {n, 3, 130}]
Formula
a(n) = A332888(n) - 2 for n >= 3.
Comments