cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332908 Number of entries in the fourth cycles of all permutations of [n] when cycles are ordered by increasing lengths.

This page as a plain text file.
%I A332908 #8 Apr 21 2020 08:30:35
%S A332908 1,21,226,2612,29261,346453,4338214,57819554,815225643,12234293579,
%T A332908 194294281572,3264124624256,57826690252441,1079032037759257,
%U A332908 21142347350725466,434563256137908638,9344589765620199919,209952915324112384719,4919186923210370523448
%N A332908 Number of entries in the fourth cycles of all permutations of [n] when cycles are ordered by increasing lengths.
%H A332908 Alois P. Heinz, <a href="/A332908/b332908.txt">Table of n, a(n) for n = 4..450</a>
%H A332908 Andrew V. Sills, <a href="https://arxiv.org/abs/1912.05306">Integer Partitions Probability Distributions</a>, arXiv:1912.05306 [math.CO], 2019.
%H A332908 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>
%p A332908 b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
%p A332908       add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))((i-1)!^j*
%p A332908         b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
%p A332908          (n, i$j, n-i*j)), j=0..n/i)))
%p A332908     end:
%p A332908 a:= n-> b(n, 1, 4)[2]:
%p A332908 seq(a(n), n=4..22);
%t A332908 multinomial[n_, k_List] := n!/Times @@ (k!);
%t A332908 b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, 0, Sum[Function[ p, p + If[p =!= 0 && t>0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][(i-1)!^j* b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Array[i&, j], n - i*j]]], {j, 0, n/i}]]];
%t A332908 a[n_] := b[n, 1, 4][[2]];
%t A332908 a /@ Range[4, 22] (* _Jean-François Alcover_, Apr 21 2020, after _Alois P. Heinz_ *)
%Y A332908 Column k=4 of A322383.
%K A332908 nonn
%O A332908 4,2
%A A332908 _Alois P. Heinz_, Mar 02 2020