cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332932 Sum of ceiling(sqrt(d)) where d runs through the divisors of n.

This page as a plain text file.
%I A332932 #22 Oct 08 2022 09:45:32
%S A332932 1,3,3,5,4,8,4,8,6,10,5,14,5,10,10,12,6,16,6,17,11,12,6,22,9,13,12,18,
%T A332932 7,25,7,18,13,14,13,28,8,15,14,27,8,27,8,21,20,15,8,33,11,23,16,23,9,
%U A332932 30,16,29,16,17,9,44,9,17,22,26,17,32,10,25,17,32,10
%N A332932 Sum of ceiling(sqrt(d)) where d runs through the divisors of n.
%H A332932 Amiram Eldar, <a href="/A332932/b332932.txt">Table of n, a(n) for n = 1..10000</a>
%p A332932 a:= n-> add(ceil(sqrt(d)), d=numtheory[divisors](n)):
%p A332932 seq(a(n), n=1..80);  # _Alois P. Heinz_, Mar 02 2020
%t A332932 Table[DivisorSum[n,Ceiling[Sqrt[#]]&],{n,80}]
%o A332932 (PARI) a(n) = sumdiv(n, d, ceil(sqrt(d))); \\ _Michel Marcus_, Mar 03 2020
%o A332932 (Python)
%o A332932 from math import isqrt
%o A332932 from sympy import divisors
%o A332932 def A332932(n): return sum(1+isqrt(d-1) for d in divisors(n,generator=True)) # _Chai Wah Wu_, Jul 28 2022
%Y A332932 Cf. A058268, A086671, A332931, A332933, A332934, A332935.
%K A332932 nonn
%O A332932 1,2
%A A332932 _Harvey P. Dale_, Mar 02 2020