cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332935 Sum of ceiling(n^(3/2)) where d runs through the divisors of n.

This page as a plain text file.
%I A332935 #17 Oct 08 2022 09:45:43
%S A332935 1,4,7,12,13,25,20,35,34,48,38,75,48,76,78,99,72,129,84,146,123,145,
%T A332935 112,216,138,184,175,233,158,293,174,281,234,274,240,395,227,322,298,
%U A332935 422,264,467,283,445,407,427,324,613,363,527,443,567,387,667,458,676
%N A332935 Sum of ceiling(n^(3/2)) where d runs through the divisors of n.
%H A332935 Amiram Eldar, <a href="/A332935/b332935.txt">Table of n, a(n) for n = 1..10000</a>
%p A332935 a:= n-> add(ceil(d^(3/2)), d=numtheory[divisors](n)):
%p A332935 seq(a(n), n=1..60);  # _Alois P. Heinz_, Mar 02 2020
%t A332935 Table[DivisorSum[n,Ceiling[Sqrt[#^3]]&],{n,80}]
%o A332935 (PARI) a(n)={sumdiv(n, d, 1 + sqrtint(d^3 - 1))} \\ _Andrew Howroyd_, Mar 02 2020
%o A332935 (Python)
%o A332935 from math import isqrt
%o A332935 from sympy import divisors
%o A332935 def A332935(n): return sum(1+isqrt(d**3-1) for d in divisors(n,generator=True)) # _Chai Wah Wu_, Aug 03 2022
%Y A332935 Cf. A058271, A086671, A332931, A332932, A332933, A332934.
%K A332935 nonn
%O A332935 1,2
%A A332935 _Harvey P. Dale_, Mar 02 2020