cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332937 a(n) is the greatest common divisor of the first two terms of row n of the Wythoff array (A035513).

This page as a plain text file.
%I A332937 #14 Jan 15 2025 16:43:10
%S A332937 1,1,2,3,4,1,1,1,2,1,1,1,3,1,2,5,1,1,6,1,1,7,1,1,8,1,1,9,2,1,10,1,1,
%T A332937 11,2,1,1,1,1,1,2,1,3,1,4,1,2,1,1,1,2,3,1,1,2,5,4,3,1,1,2,1,1,1,1,1,6,
%U A332937 1,1,1,2,1,2,1,1,1,4,7,1,1,1,3,2,1,1,1,2,1,8,1,3,1,2,1,1,5,12,1,2,1,1,1,2,1,13,3,1,1
%N A332937 a(n) is the greatest common divisor of the first two terms of row n of the Wythoff array (A035513).
%C A332937 a(n) is also the gcd of every pair of consecutive terms of row n of the Wythoff array. Conjectures: the maximal number of consecutive 1's is 5, and the limiting proportion of 1's exists. See A332938.
%C A332937 If seems that for all primes p > 3, a(1+p) = 1. - _Antti Karttunen_, Jan 15 2025
%H A332937 Antti Karttunen, <a href="/A332937/b332937.txt">Table of n, a(n) for n = 1..20000</a>
%e A332937 See A332938.
%t A332937 W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; (* A035513 *)
%t A332937 t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 160}]  (* A332937 *)
%t A332937 Flatten[Position[t, 1]]  (* A332938 *)
%o A332937 (PARI) T(n, k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
%o A332937 a(n) = gcd(T(n, 0), T(n, 1)); \\ _Michel Marcus_, Mar 03 2020
%Y A332937 Cf. A000045, A173027, A173028, A035513, A332938 (positions of 1's).
%K A332937 nonn,easy
%O A332937 1,3
%A A332937 _Clark Kimberling_, Mar 03 2020
%E A332937 More terms from _Antti Karttunen_, Jan 15 2025