This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332938 #7 Mar 09 2020 15:18:32 %S A332938 1,2,6,7,8,10,11,12,14,17,18,20,21,23,24,26,27,30,32,33,36,37,38,39, %T A332938 40,42,44,46,48,49,50,53,54,59,60,62,63,64,65,66,68,69,70,72,74,75,76, %U A332938 79,80,81,84,85,86,88,90,92,94,95,98,100,101,102,104,107 %N A332938 Indices of the primitive rows of the Wythoff array (A035513); see Comments. %C A332938 In a row of the Wythoff array, either every two consecutive terms are relatively prime or else no two consecutive terms are relatively prime. In the first case, we call the row primitive; otherwise, the row is an integer multiple of a tail of a preceding row. Conjectures: the maximal number of consecutive primitive rows is 5, and the limiting proportion of primitive rows exists and is approximately 0.608. %e A332938 The Wythoff array begins: %e A332938 1 2 3 5 8 13 21 34 55 89 144 ... %e A332938 4 7 11 18 29 47 76 123 199 322 521 ... %e A332938 6 10 16 26 42 68 110 178 288 466 754 ... %e A332938 9 15 24 39 63 102 165 267 432 699 1131 ... %e A332938 12 20 32 52 84 136 220 356 576 932 1508 ... %e A332938 14 23 37 60 97 157 254 411 665 1076 1741 ... %e A332938 17 28 45 73 118 191 309 500 809 1309 2118 ... %e A332938 19 31 50 81 131 212 343 555 898 1453 2351 ... %e A332938 22 36 58 94 152 246 398 644 1042 1686 2728 ... %e A332938 Row 1: A000045 (Fibonacci numbers, a primitive row) %e A332938 Row 2: A000032 (Lucas numbers, primitive) %e A332938 Row 3: 2 times a tail of row 1 %e A332938 Row 4: 3 times a tail of row 1 %e A332938 Row 5 4 times a tail of row 1 %e A332938 Row 6: essentially A000285, primitive %e A332938 Row 7: essentially A022095, primitive %e A332938 Row 8: essentially A013655, primitive %e A332938 Row 9: 2 times a tail of row 2 %e A332938 Thus first five terms of (a(n)) are 1,2,6,7,8. %t A332938 W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; (* A035513 *) %t A332938 t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 160}] (* A332937 *) %t A332938 Flatten[Position[t, 1]] (* A332938 *) %Y A332938 Cf. A000045, A173027, A173028, A035513, A332937. %K A332938 nonn,easy %O A332938 1,2 %A A332938 _Clark Kimberling_, Mar 03 2020