This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332954 #24 Mar 15 2020 02:49:34 %S A332954 1,1,1,1,1,1,2,1,1,1,3,2,1,1,1,6,3,2,1,1,1,9,5,3,2,1,1,1,19,8,5,3,2,1, %T A332954 1,1,30,13,7,5,3,2,1,1,1,60,21,12,7,5,3,2,1,1,1,108,38,17,11,7,5,3,2, %U A332954 1,1,1 %N A332954 Triangle read by rows: T(n,k) is the number of permutations sigma of [n] such that sigma(j)/(j+k) > sigma(j+1)/(j+k+1) for 1 <= j <= n-1. %C A332954 Conjecture: T(2*n+4,n) = A052955(n+2). This is true for n <= 10. %C A332954 T(n+1,k) is equal to the number of permutations sigma of [n] such that sigma(j)/(j+k) >= sigma(j+1)/(j+k+1) for 1 <= j <= n-1. %H A332954 Seiichi Manyama, <a href="/A332954/b332954.txt">Rows n = 0..18, flattened</a> %H A332954 Mathematics.StackExchange, <a href="https://math.stackexchange.com/questions/3572301/why-are-the-numbers-of-two-different-permutations-the-same">Why are the numbers of two different permutations the same?</a>, Mar 07 2020. %e A332954 Triangle begins: %e A332954 n\k | 0 1 2 3 4 5 6 7 8 9 10 11 %e A332954 -----+----------------------------------------- %e A332954 0 | 1; %e A332954 1 | 1, 1; %e A332954 2 | 1, 1, 1; %e A332954 3 | 2, 1, 1, 1; %e A332954 4 | 3, 2, 1, 1, 1; %e A332954 5 | 6, 3, 2, 1, 1, 1; %e A332954 6 | 9, 5, 3, 2, 1, 1, 1; %e A332954 7 | 19, 8, 5, 3, 2, 1, 1, 1; %e A332954 8 | 30, 13, 7, 5, 3, 2, 1, 1, 1; %e A332954 9 | 60, 21, 12, 7, 5, 3, 2, 1, 1, 1; %e A332954 10 | 108, 38, 17, 11, 7, 5, 3, 2, 1, 1, 1; %e A332954 11 | 222, 64, 31, 16, 11, 7, 5, 3, 2, 1, 1, 1; %Y A332954 T(n,0) gives A309807. %Y A332954 Cf. A052955. %K A332954 nonn,tabl %O A332954 0,7 %A A332954 _Seiichi Manyama_, Mar 04 2020