This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332958 #35 May 06 2020 09:41:35 %S A332958 1,12,240,7000,272160,13311144,787218432,54717165360,4375800000000, %T A332958 396040894180360,40038615905992704,4473490414613093328, %U A332958 547532797546896179200,72869747140722656250000,10478808079059531910348800,1619337754490833097114916960 %N A332958 Number of labeled forests with 2n nodes consisting of n-1 isolated nodes and a labeled tree with n+1 nodes. %C A332958 Given 2n vertices, we can choose n-1 of them in C(2n, n-1) ways. For each of these ways there are A000272(n+1) trees. (possibilities) %F A332958 a(n) = C(2*n,n-1) * (n+1)^(n-1). %F A332958 a(n) = A001791(n) * A000272(n+1). %F A332958 a(n) ~ exp(1) * 2^(2*n) * n^(n - 3/2) / sqrt(Pi). %e A332958 a(1) = 1. The forest is the tree of 2 nodes. It can be depicted by 1--2. %e A332958 a(2) = 12. Given 4 nodes we can choose 1 of them in C(4,1) = 4 ways. For each of these 4 ways there are A000272(n+1) = (n+1)^(n-1) = 3 trees to complete the forest. The 12 forests can be represented by: %e A332958 1 3-2-4, 1 2-3-4, 1 2-4-3, %e A332958 2 3-1-4, 2 1-3-4, 2 1-4-3, %e A332958 3 2-1-4, 3 1-2-4, 3 1-4-2, %e A332958 4 2-1-3, 4 1-2-3, 4 1-3-2. %t A332958 a[n_] := Binomial[2n, n-1] * (n+1)^(n-1); Array[a,18] (* _Amiram Eldar_, Apr 12 2020 *) %o A332958 (PARI) a(n) = binomial(2*n,n-1) * (n+1)^(n-1); %Y A332958 Cf. A000272, A001791, A302112. %K A332958 nonn,easy %O A332958 1,2 %A A332958 _Washington Bomfim_, Apr 12 2020