This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332959 #67 May 17 2020 13:49:47 %S A332959 1,3,12,15,180,240,105,5040,6720,7000,945,151200,352800,315000,272160, %T A332959 10395,6029100,21067200,20790000,17962560,13311144,135135,276215940, %U A332959 1387386000,1765764000,1471133664,1211314104,787218432,2027025,14983768800,105945840000,165225060000,146023637760,121131410400,94466211840,54717165360 %N A332959 Triangle read by rows: T(n,k) is the number of labeled forests with n trees and 2n nodes and with the largest tree having exactly k nodes, (n >= 1, 2 <= k <= n+1). %C A332959 The first formula is based on Kolchin's formula (1.4.2) [see the Kolchin reference]. %D A332959 V. F. Kolchin, Random Graphs. Encyclopedia of Mathematics and Its Applications 53. Cambridge Univ. Press, Cambridge, 1999, pp 30-31. %H A332959 Andrew Howroyd, <a href="/A332959/b332959.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows) %F A332959 T(n,k) = ((2*n)!/n!) * Sum_{compositions p_1 + ... + p_n = 2*n, 1 <= p_i <= k} %F A332959 Product_{j=1..n} f(p_j) / p_j!, where f(p_j) = A000272(p_j) = p_j^(p_j-2). %e A332959 Triangle T(n,k) begins: %e A332959 1; %e A332959 3, 12; %e A332959 15, 180, 240; %e A332959 105, 5040, 6720, 7000; %e A332959 945, 151200, 352800, 315000, 272160; %e A332959 10395, 6029100, 21067200, 20790000, 17962560, 13311144; %e A332959 ... %e A332959 The graphs for T(2,2) and T(2,3) are illustrated below: %e A332959 o---o : o o %e A332959 : | %e A332959 o---o : o---o %e A332959 T(2,2) = 3 since the graph on the left has 3 labelings. %e A332959 T(2,3) = 12 since the graph on the right has 12 labelings. %o A332959 (PARI) %o A332959 T(n, k) = { my(S = 0); %o A332959 forpart(a = 2*n, %o A332959 if(a[n] == k, %o A332959 my(D = Set(a)); %o A332959 my(Pr = prod(j=1, #D, my(p = D[j], c = #select(x->x==p, Vec(a))); p^((p-2)*c) / (p!^c*c!))); %o A332959 S += n!*Pr ) %o A332959 , [1, k], [n, n]); (2*n)! / n! * S }; %o A332959 (PARI) %o A332959 B(n,k)={my(p=sum(j=1, k, j^(j-2)*x^j/j!)); (2*n)!*polcoef( polcoef( exp(y*p + O(x*x^(2*n))), 2*n, x), n, y)} %o A332959 T(n,k)={B(n,k)-B(n,k-1)} \\ _Andrew Howroyd_, May 08 2020 %Y A332959 Columns k=2..3 are A001147, A332960. %Y A332959 Row sums give A302112. %Y A332959 Main diagonal is A332958. %Y A332959 Cf. A000272, A001147, A302112, A332958, A332960. %K A332959 nonn,tabl,easy %O A332959 1,2 %A A332959 _Washington Bomfim_, Apr 13 2020