A332961 Triangle read by rows: T(n,k) is the number of labeled forests with n trees and 2n nodes and with the largest tree having at most k nodes, (n>=1, 2<=k<=n+1).
1, 3, 15, 15, 195, 435, 105, 5145, 11865, 18865, 945, 152145, 504945, 819945, 1092105, 10395, 6039495, 27106695, 47896695, 65859255, 79170399, 135135, 276351075, 1663737075, 3429501075, 4900634739, 6111948843, 6899167275, 2027025, 14985795825, 120931635825, 286156695825, 432180333585
Offset: 1
Examples
Triangle T(n,k) begins: 1; 3, 15; 15, 195, 435; 105, 5145, 11865, 18865; 945, 152145, 504945, 819945, 1092105; 10395, 6039495, 27106695, 47896695, 65859255, 79170399; ... The graphs for T(2,2) and T(2,3) are illustrated below: o---o : o---o o o : | o---o : o---o o---o T(2,2) = 3 since the first graph on the left has 3 labelings. T(2,3) = 15 since the first graph has 3 labelings, and the second has 12 labelings.
References
- V. F. Kolchin, Random Graphs. Encyclopedia of Mathematics and Its Applications 53. Cambridge Univ. Press, Cambridge, 1999, pp 30-31.
Crossrefs
Programs
-
PARI
T(n,k) = { my(S = 0, D, p, c); forpart(a = 2*n, D = Set(a); S += prod(j=1,#D, p=D[j]; c=#select(x-> x==p,Vec(a)); (p^(p-2)/p!)^c /c!) , [1, k], [n, n]); (2*n)! * S };
Comments