This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332964 #18 Mar 26 2020 23:18:43 %S A332964 1,0,1,0,1,1,1,1,1,1,3,4,2,1,1,16,9,5,2,1,1,96,37,13,6,2,1,1,812,162, %T A332964 46,14,6,2,1,1,10957,1120,194,50,15,6,2,1,1,260494,12675,1219,204,51, %U A332964 15,6,2,1,1,11713772,276758,13099,1254,208,52,15,6,2,1,1 %N A332964 Triangle read by rows: T(n,k) is the number of unlabeled simple graphs on n nodes with exactly k bipartite connected components, n >= 0, 0 <= k <= n. %C A332964 T(n,k) is the number of graphs on n nodes with incidence matrix of rank n-k, where the incidence matrix is defined as in Godsil-Royle reference below. %D A332964 C. Godsil and G. Royle, Algebraic Graph Theory, Springer, 2001, page 166. %F A332964 G.f.: Product_{i>=1} (1/(1-x^i))^A157051(i)*(1/(1-y*x^i))^A005142(i). %e A332964 Triangle T(n,k) begins: %e A332964 1; %e A332964 0, 1; %e A332964 0, 1, 1; %e A332964 1, 1, 1, 1; %e A332964 3, 4, 2, 1, 1; %e A332964 16, 9, 5, 2, 1, 1; %e A332964 96, 37, 13, 6, 2, 1, 1; %e A332964 812, 162, 46, 14, 6, 2, 1, 1; %e A332964 ... %t A332964 Needs["Combinatorica`"]; %t A332964 Table[Table[Count[Prepend[Flatten[Table[g = {n, k};b = GraphData[g,"IncidenceMatrix"]; {n - MatrixRank[b]}, {k,2, NumberOfGraphs[n]}]], n], i], {i, 0, n}], {n, 0,7}] // Grid %Y A332964 Cf. A157051 (column k=0 for n>0), A000088 (row sums), A157015, A005142. %K A332964 nonn,tabl %O A332964 0,11 %A A332964 _Geoffrey Critzer_, Mar 04 2020