A332972 Solutions k of the equation cototient(k) = cototient(k-1) + cototient(k-2) where cototient(k) is A051953.
3, 4, 105, 165, 195, 2205, 2835, 38805, 131145, 407925, 936495, 1025505, 1231425, 1276905, 1788255, 1925565, 2521695, 2792145, 2847585, 3289935, 5003745, 5295885, 5710089, 6315309, 6986889, 13496385, 17168085, 19210065, 20171385, 22348365, 26879685, 27798705
Offset: 1
Keywords
Examples
3 is a term since cototient(3) = 1 and cototient(1) + cototient(2) = 0 + 1 = 1. 105 is a term since cototient(105) = 57 and cototient(103) + cototient(104) = 1 + 56 = 57.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..176
Crossrefs
Programs
-
Mathematica
cotot[n_] := n - EulerPhi[n]; Select[Range[3, 10^6], cotot[#] == cotot[# - 1] + cotot[# - 2] &]