This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332975 #8 Mar 05 2020 03:40:01 %S A332975 3,24,360,5016,28440,42066,50568,60456,187176,998670,1454706,12055512, %T A332975 14365608,25726728,27896424,51670374,91702962,141084774,236280786, %U A332975 249854952,386668344,439362504,792554574,1115866152,1931976696,2467823442,2496238590,2655297558,2715505440 %N A332975 Solutions k of the equation isigma(k) = isigma(k-1) + isigma(k-2) where isigma(k) is the sum of the infinitary divisors of k (A049417). %H A332975 Amiram Eldar, <a href="/A332975/b332975.txt">Table of n, a(n) for n = 1..38</a> %e A332975 24 is a term since isigma(24) = 60 and isigma(22) + isigma(23) = 36 + 24 = 60. %t A332975 fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[3, 10^5], isigma[#] == isigma[# - 1] + isigma[# - 2] &] %Y A332975 The infinitary version of A065900. %Y A332975 Cf. A049417, A065557, A075565, A076136, A076251, A145469, A291126, A291176, A292033, A294995, A332976. %K A332975 nonn %O A332975 1,1 %A A332975 _Amiram Eldar_, Mar 04 2020