This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332978 #30 Jun 07 2020 10:20:00 %S A332978 271,5746,14040,32294,50551,108737,180662,276533,259805,558256,591687, %T A332978 901811,1117126,1015277,1386667,1223260,1944396,3149291,3165147, %U A332978 4523784,4764416,4859839,6025266,7186096 %N A332978 The number of regions formed inside a triangle with leg lengths equal to the Pythagorean triples by straight line segments mutually connecting all vertices and all points that divide the sides into unit length parts. %C A332978 The terms are from numeric computation - no formula for a(n) is currently known. %H A332978 Scott R. Shannon, <a href="/A332978/a332978.png">Triangle regions for leg lengths (3,4,5)</a>. %H A332978 Scott R. Shannon, <a href="/A332978/a332978_3.png">Triangle regions for leg lengths (6,8,10)</a>. %H A332978 Scott R. Shannon, <a href="/A332978/a332978_1.png">Triangle regions for leg lengths (5,12,13)</a>. %H A332978 Scott R. Shannon, <a href="/A332978/a332978_4.png">Triangle regions for leg lengths (9,12,15)</a>. %H A332978 Scott R. Shannon, <a href="/A332978/a332978_2.png">Triangle regions for leg lengths (8,15,17)</a>. %H A332978 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a>. %H A332978 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pythagorean_triple">Pythagorean triple</a>. %e A332978 The triples are ordered by the total sum of the leg lengths: %e A332978 Triple | Number of regions %e A332978 (3, 4, 5) | 271 %e A332978 (6, 8, 10) | 5746 %e A332978 (5, 12, 13) | 14040 %e A332978 (9, 12, 15) | 32294 %e A332978 (8, 15, 17) | 50551 %e A332978 (12, 16, 20) | 108737 %e A332978 (7, 24, 25) | 180662 %e A332978 (15, 20, 25) | 276533 %e A332978 (10, 24, 26) | 259805 %e A332978 (20, 21, 29) | 558256 %e A332978 (18, 24, 30) | 591687 %e A332978 (16, 30, 34) | 901811 %e A332978 (21, 28, 35) | 1117126 %e A332978 (12, 35, 37) | 1015277 %e A332978 (15, 36, 39) | 1386667 %e A332978 (9, 40, 41) | 1223260 %e A332978 (24, 32, 40) | 1944396 %e A332978 (27, 36, 45) | 3149291 %e A332978 (14, 48, 50) | 3165147 %e A332978 (20, 48, 52) | 4523784 %e A332978 (24, 45, 51) | 4764416 %e A332978 (30, 40, 50) | 4859839 %e A332978 (28, 45, 53) | 6025266 %e A332978 (33, 44, 55) | 7186096 %Y A332978 Cf. A333135 (n-gons), A333136 (vertices), A333137 (edges), A103605 (Pythagorean triple ordering), A007678, A092867, A331452. %K A332978 nonn,more %O A332978 1,1 %A A332978 _Scott R. Shannon_ and _N. J. A. Sloane_, Mar 04 2020 %E A332978 a(8)-a(24) from _Lars Blomberg_, Jun 07 2020