cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332978 The number of regions formed inside a triangle with leg lengths equal to the Pythagorean triples by straight line segments mutually connecting all vertices and all points that divide the sides into unit length parts.

This page as a plain text file.
%I A332978 #30 Jun 07 2020 10:20:00
%S A332978 271,5746,14040,32294,50551,108737,180662,276533,259805,558256,591687,
%T A332978 901811,1117126,1015277,1386667,1223260,1944396,3149291,3165147,
%U A332978 4523784,4764416,4859839,6025266,7186096
%N A332978 The number of regions formed inside a triangle with leg lengths equal to the Pythagorean triples by straight line segments mutually connecting all vertices and all points that divide the sides into unit length parts.
%C A332978 The terms are from numeric computation - no formula for a(n) is currently known.
%H A332978 Scott R. Shannon, <a href="/A332978/a332978.png">Triangle regions for leg lengths (3,4,5)</a>.
%H A332978 Scott R. Shannon, <a href="/A332978/a332978_3.png">Triangle regions for leg lengths (6,8,10)</a>.
%H A332978 Scott R. Shannon, <a href="/A332978/a332978_1.png">Triangle regions for leg lengths (5,12,13)</a>.
%H A332978 Scott R. Shannon, <a href="/A332978/a332978_4.png">Triangle regions for leg lengths (9,12,15)</a>.
%H A332978 Scott R. Shannon, <a href="/A332978/a332978_2.png">Triangle regions for leg lengths (8,15,17)</a>.
%H A332978 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a>.
%H A332978 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pythagorean_triple">Pythagorean triple</a>.
%e A332978 The triples are ordered by the total sum of the leg lengths:
%e A332978            Triple        |      Number of regions
%e A332978           (3, 4, 5)      |           271
%e A332978           (6, 8, 10)     |           5746
%e A332978           (5, 12, 13)    |           14040
%e A332978           (9, 12, 15)    |           32294
%e A332978           (8, 15, 17)    |           50551
%e A332978           (12, 16, 20)   |           108737
%e A332978           (7, 24, 25)    |           180662
%e A332978           (15, 20, 25)   |           276533
%e A332978           (10, 24, 26)   |           259805
%e A332978           (20, 21, 29)   |           558256
%e A332978           (18, 24, 30)   |           591687
%e A332978           (16, 30, 34)   |           901811
%e A332978           (21, 28, 35)   |           1117126
%e A332978           (12, 35, 37)   |           1015277
%e A332978           (15, 36, 39)   |           1386667
%e A332978           (9, 40, 41)    |           1223260
%e A332978           (24, 32, 40)   |           1944396
%e A332978           (27, 36, 45)   |           3149291
%e A332978           (14, 48, 50)   |           3165147
%e A332978           (20, 48, 52)   |           4523784
%e A332978           (24, 45, 51)   |           4764416
%e A332978           (30, 40, 50)   |           4859839
%e A332978           (28, 45, 53)   |           6025266
%e A332978           (33, 44, 55)   |           7186096
%Y A332978 Cf. A333135 (n-gons), A333136 (vertices), A333137 (edges), A103605 (Pythagorean triple ordering), A007678, A092867, A331452.
%K A332978 nonn,more
%O A332978 1,1
%A A332978 _Scott R. Shannon_ and _N. J. A. Sloane_, Mar 04 2020
%E A332978 a(8)-a(24) from _Lars Blomberg_, Jun 07 2020